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a b s t r a c t

Component importance measures have been defined and applied so far mostly for coherent systems. This
paper develops and compares possible extensions of the traditional measures to non-coherent systems.
The focus is on Birnbaum- and Criticality-type importances, both with respect to system unavailability
and system failure intensity. Several versions are suggested for both measure types, each with different
interpretation and potential applications. The measures are presented in terms of Boolean system logic
functions so that they can be quantified with usual fault tree techniques even for large systems without
manually solving and derivation of lengthy analytical functions. Examples demonstrate the method and
discover some potential problems in system design if a component can initiate an accident while it is also
part of a safety function to prevent an accident. Results are compared to earlier published results
obtained with different algorithms.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Several component and event importance measures have been
introduced by many authors since the first structural measure by
Birnbaum [1]. The relationships of the measures have also been
presented in textbooks [2] and many journal articles. For more
extensive reviews the reader is referred to the contents and
references in [3,4]. Earlier work has focused mostly on coherent
systems which can be modelled without NOT-gates or negations in
system logic models such as fault trees. Non-coherent is a logic
model that includes both failed states and success states for some
or all components, or cannot be modelled without Boolean NOT-
gates in a fault-tree. Importance measures are intended to be
useful in ranking components or events for various applications
and for optimising decision making. The roles of many measures in
a variety of applications are described in Ref. [5].

This paper reviews, compares and extends importance mea-
sures that have been suggested before, and introduces several new
ones for non-coherent systems and risk models. Importance
measures have been traditionally defined for components with
respect to system unavailability i.e. when the interest of the ana-
lyst is in system unavailability rather than system failure intensity
(frequency). The basic expression for coherent system failure
intensity was pointed out by Murchland [6] and is recognised as

the sum of the products of component failure intensity and com-
ponent Birnbaum measure, e.g. [7]. In a safety system the role of a
component is to prevent an accident. In the success state the
component is an accident preventer but in a failed state it can be
called an accident enabler. Importance measures with respect to
system failure intensity or accident frequency need to take into
account that a component may appear as an initiating event
having a frequency or as an enabler having unavailability, or both.

Criticality importance is defined as the relative contribution of
a component to system output quantity of interest (unavailability
or failure frequency). It indicates the relative reduction of the
output if or when the reliability of a component is made perfect,
not able to fail. This works in coherent systems and is in propor-
tion to the product of Birnbaum measure and component una-
vailability (or intensity). Complications can arise if a component
appears both as an initiator and an enabler. New definitions are
needed especially in non-coherent systems when both failures and
repairs can contribute to the system unavailability and failure
intensity.

Criticality importance measures for components with respect
to system failure intensity and with respect to the total system
failure count were presented in [3]. These take into account the
total contribution of each component i.e. (a) contribution as the
last failure (“initiator”) of a minimal cut set (MCS), and (b) as the
unavailability contribution (“enabler”) in other MCS in which the
component is a factor. These are now extended to take into
account also the total contributions of repairs and availabilities.
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Concerning non-coherent systems Ref. [8] compared two
alternatives as potential extensions of the classical Birnbaum
measure. A couple of new alternatives are suggested in the
present paper.

Ref. [8] also presented the integral of system failure intensity
(failure count) for non-coherent systems using partial derivatives
of analytical system probability. Refs. [9] and [3] presented the
failure intensity for non-coherent systems in terms of probabilities
of Boolean expressions solvable by computerised fault tree
methods even for very large systems. It was also pointed out that a
consistent definition of Birnbaum measure for non-coherent sys-
tems is exactly like the original for coherent systems and equals
the derivative of the system unavailability with respect to the
component unavailability parameter.

In Ref. [3] importance measures with respect to system failure
intensity were developed and it also pointed out that the Barlow–

Proschan importance [12] only measures the contribution of a
component as the last failure in a MCS, not the total contribution.
A formula for the total contribution was presented in [13] and [3].
Ref. [11] also evaluated for a non-coherent system importance
measures with respect to system failure intensity. Ref. [14]
reviewed several examples of non-coherent systems analysed in
the literature and also assessed methods suggested for treating
other mutually exclusive events.

The rest of this article is structured as follows. In Section 2 the
fundamental concepts and definitions are presented in general
terms of probabilities of Boolean expressions and their relation-
ships so that explicit analytical functions and their derivations are
not needed when computerised algorithms produce the needed
quantities. It turns out that several alternatives can be suggested
and justified for extensions of both Birnbaum and Criticality
importance measures with somewhat different definitions and
interpretations, depending on the purpose or an application.
Importance measures are defined and their relations are pointed
out so that a minimum number of calculations from the complete
system model are needed. In Section 3 comparisons to earlier
approaches are made and demonstrated with numerical examples.
Summary conclusions are drawn in Section 4.

2. System models with negations

The formalism and definitions of importance measures for non-
coherent systems are presented here following mostly notations in
[9,3]. Capital letters indicate Boolean variables. Logic unions and
intersections are indicated with regular plus sign and multiplication.
Consider a TOP-event Y of a fault tree of a system or a risk model, a
Boolean expression of the failed state of a system or function in terms
of the basic event failed states Zk and possibly also success states Zk

0,
k¼1, …, K. The complements Zk

0 are for the time being considered
individual events with probabilities zk

0 ¼P(Zk
0)¼1–zk. The probability

y¼P(Y)¼y(z,z0) is multi-linear in terms of all K basic event prob-
abilities zk¼P(Zk) and possibly K or less complements zk

0. This is
understandable based on quantification of Eq. (1) below with the
inclusion–exclusion principle, and also proved in [19]. Each event Zk

0

is assumed s-independent of the other events like Zk but these two
are mutually exclusive and P(ZkZk’)¼0.

The order of computation of importance measures is presented
largely so that a minimum number of model runs are needed. All
variables can be time-dependent but the time argument t is not
always marked. It is generally possible to write Y in terms of the
minimal cut sets (MCS) or prime implicants of any Zk as

Y ¼ ZkGkþZk’DkþHk; ð1Þ
where the unions of terms containing Zk or Zk

0 are separated from
each other and from other terms Hk. The Boolean functions Gk, Dk

and Hk are independent of both Zk and Zk
0. ZkGk is the union of all

MCS containing Zk, and Zk’Dk consists of all terms containing Zk’. Hk

contains neither Zk nor Zk’. Besides, Gk and Dk contain no common
terms because any such would be part of Hk. In coherent systems
Dk¼ϕ (empty). The probability P(Y) can be quantified with normal
inclusion–exclusion (Sylvester–Poincaré) principle with the
exception that all terms and products of terms that contain both Zk
and Zk’ must be deleted due to the logic product Zk � Zk’¼ϕ
(“FALSE”).

Taking into account that zk’¼P(Zk’)¼1�zk with zk¼P(Zk), the
probability P(Y) can be written as

y¼ P Yð Þ ¼ zk P Gkð Þ–P GkHkð Þ½ �þzk’ P Dkð Þ–P DkHkð Þ½ �þP Hkð Þ
¼ y�

k þzk yþ
k �y�

k

� �¼ yþ
k þzk ’ y

�
k �yþ

k

� �
; ð2Þ

where yk
þ¼P(GkþHk) and yk

�¼P(DkþHk) are conditional prob-
abilities of Y under conditions

Zk¼TRUE and Zk¼FALSE, respectively.
These yk

þ and yk
� can be solved by fault trees setting Zk TRUE

and FALSE in (1), respectively. Or, having solved y by any means,
one can obtain yk

þ(z)¼y(z|zk¼1,zk
0 ¼0), yk�(z)¼y(z|zk¼0,zk

0 ¼1),
and hk¼P(Hk)¼y(z|zk¼zk’¼0). However, all these need not be
quantified from the complete model because of the relationship
zkyk

þþzk’yk
�¼y. Having solved y and yk� one can get ykþ as

yþ
k ¼ y–zk’y

�
k

� �
=zk: ð3Þ

It is possible that yk
� is larger or smaller than yk

þ . Thus, the
optimal value for zk is zk¼0 if ykþ4yk

� and zk¼1 if ykþoyk
� . In

the latter case it is natural to ask: why not set component k to a
failed state zk¼1? That would be the optimal state for this com-
ponent. However, if the same component participates in a pro-
duction function there may be economical reasons to keep it
operating as reliably as possible. This contradictory situation calls
for a compromise between economy and safety and it could not be
solved only with importance measures.

The ratio yk
þ/y corresponds to the traditional risk achievement

worth RAW(Zk) or risk increase factor RIF(Zk) for coherent systems
and has been applied widely for determining acceptable allowed
repair or outage times, AOT. In noncoherent systems there are two
such measures that may be called “risk gains” (RG) because either
one can be larger or smaller than one

RGþ
k ¼ yþ

k =y; RG�
k ¼ y�

k =y ð4Þ

Decision making has to use one or both of these depending on
the situation.

2.1. NOT-gates in a fault-tree

Non-coherence is not always presented only by negated events
in a system model. There can be logic NOT-gates higher up in a
fault-tree. In that case the model can be modified so that it con-
tains negations of basic events but no NOT-gates. This is accom-
plished as follows:

� NOT-gates are pushed down toward basic events by de
Morgan’s Laws,

� new variable names (basic events) are introduced to represent
negated basic events,

� minimal cut sets (MCS) of the rewritten formula are
determined,

� those terms that contain both an event and its encoded com-
plement are deleted,

� the probability of the remaining union of MCSs is quantified.
When a higher-order inclusion–exclusion development is used,
also higher-order terms (products of MCSs) containing both an
event and the complement are deleted.
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