Accepted Manuscript

Mathematical model simulating the ignition of a droplet of coal water slurry containing petrochemicals

Dmitrii O. Glushkov, Geniy V. Kuznetsov, Pavel A. Strizhak, Semen V. Syrodoy

PII:	S0360-5442(18)30364-5
DOI:	10.1016/j.energy.2018.02.130
Reference:	EGY 12430
To appear in:	Energy
Received Date:	06 September 2017
Revised Date:	16 February 2018
Accepted Date:	21 February 2018

Please cite this article as: Dmitrii O. Glushkov, Geniy V. Kuznetsov, Pavel A. Strizhak, Semen V. Syrodoy, Mathematical model simulating the ignition of a droplet of coal water slurry containing petrochemicals, *Energy* (2018), doi: 10.1016/j.energy.2018.02.130

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Μ	athematical model simulating the ignition of a droplet of coal water slurry containing
2		petrochemicals
3		Dmitrii O. Glushkov*, Geniy V. Kuznetsov, Pavel A. Strizhak, Semen V. Syrodoy
4		National Research Tomsk Polytechnic University
5		30, Lenin Avenue, Tomsk, 634050, Russia
6		Tel.: +7(3822) 701-777, ex. 1953
7		
8		responding author.
9		ail addresses: dmitriyog@tpu.ru (Dmitrii O. Glushkov), kuznetsovgv@tpu.ru (Geniy V.
10	Kuz	netsov), pavelspa@tpu.ru (Pavel A. Strizhak), ssyrodoy@yandex.ru (Semen V. Syrodoy).
11		
12	Absti	act
13	Globa	al problems of effective coal and oil processing waste recovery can be solved by making use of
14	these	wastes as the main fuel components for coal water slurries containing petrochemicals
15	(CWS	SP). Until now, no predictive models have been developed that would simulate the sustainable
16	igniti	on of CWSPs based on components with highly different properties, such as ash, moisture, and
17	volati	le content, heat of combustion, etc. This is exactly the type of model we are presenting in this
18	paper	. In order to gain a greater insight in the process under study, the experimental research has
19	been	conducted. We have created an experimental database with the main characteristics of CWSP
20	igniti	on, namely the duration of stages, gas-phase and heterogeneous ignition delay times,
21	maxir	num combustion temperatures, and minimum sufficient oxidizer temperatures. A
22	mathe	ematical model has been developed predicting the conditions and characteristics of CWSP
23	drople	et ignition. The signature feature of the model is that it accounts for all the main heat and mass
24	transf	er processes and chemical reactions in the <i>solid fuel – liquid fuel – water</i> system under study.
25	This	mathematical model can serve as the basis for estimating and comparing the ignition
26	chara	cteristics of different CWSPs.
27	Keyw	vords: coal water slurry containing petrochemicals; coal and oil processing wastes; hot air;
28	igniti	on; mathematical model.
29		
30	Nome	enclature and units
31	С	heat capacity, J/(kg·K)
32	С	concentration
33	D	diffusion coefficient, m ² /s
34	Ε	activation energy, J/(mole·K)
35	h_d	parameter of the smearing of the front, m
36	k	pre-exponential factor, 1/s
37	$K_{\rm P}$	permeability of porous structure, m ²
38	l	effective pore size, m
39	т	porosity
40	р	pressure, Pa
41	Q	enthalpy of process, J/kg
42	R	radius, m
43	Rout	outer radius, m
44	R_t	perfect gas constant, J/(mole·K)
45	Т	temperature, K

Download English Version:

https://daneshyari.com/en/article/8071843

Download Persian Version:

https://daneshyari.com/article/8071843

Daneshyari.com