Accepted Manuscript

Multiobjective economic-environmental power dispatch with stochastic wind-solar-small hydro power

Partha P. Biswas, P.N. Suganthan, B.Y. Qu, Gehan A.J. Amaratunga

PII: S0360-5442(18)30394-3

DOI: 10.1016/j.energy.2018.03.002

Reference: EGY 12460

To appear in: *Energy*

Received Date: 25 July 2017

Revised Date: 26 February 2018

Accepted Date: 1 March 2018

Please cite this article as: Biswas PP, Suganthan PN, Qu BY, Amaratunga GAJ, Multiobjective economic-environmental power dispatch with stochastic wind-solar-small hydro power, *Energy* (2018), doi: 10.1016/j.energy.2018.03.002.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

	ACCEPTED MANUSCRIPT							
	1	Multiobjective economic-environ	menta	l power o	dispatch with stochastic			
	2	wind-solar-si	nall h	ydro pov	ver			
	3	Partha P Biswas ¹ , P. N. Sugantha	ın ¹ , B. Y.	Qu ² , Gehan	A J. Amaratunga ³			
	4	¹ School of Electrical and Electronic Enginee	ring, Nany	ang Technolo	ogical University, Singapore			
	5	² School of Electrical and Information Engine	ering, Zho	ongyuan Univ	ersity of Technology, China			
	6	³ Department of Engineerin	ng. Univer	sity of Camb	idge. UK			
	7	parthapr001@e.ntu.edu.sg, epnsu	-	-	-			
	8	gajal@her			1-7,			
	9	gajatener	liles.ca	II.ac.uk				
	10	Abstract: Economic-environmental power dispa	atch is or	ne of the mo	st popular bi-objective non-linear			
	11	optimization problems in power system. Classica						
	12	only thermal generators often ignoring security of						
	13	in emission is paramount from environmental su						
	14	and more renewable sources into the electrical						
	15 renewable sources are intermittent and uncertain. This paper proposes multiobjective economic							
	16	emission power dispatch problem formulation						
	17 19	small-hydro (run-of-river) power. Weibull, log			1 <i>1 1</i>			
	18 19	used to calculate available wind, solar and generators of the standard IEEE 30-bus system						
	20	purpose. Network security constraints such as						
	21	also taken into consideration alongwith constra						
	22	zones for the thermal units. Decomposition based						
	23	based multiobjective differential evolution alg						
	24	advanced constraint handling technique, superiority of feasible solutions, is integrated with both the multiobjective algorithms to comply with system constraints. The simulation results of both the						
	25							
	26	algorithms are summarized, analyzed and compa	red in thi	is study.				
	27			XX 7 1				
	28		atch •	Wind	power generator · Solar			
	29 30	photovoltaic · Small-hydro power unit · U algorithms	ncertaint	y modellin	g • Multiobjective evolutionary			
		argoriumis						
31								
	Nomencla Abbreviatio							
	EED	economic-environmental dispatch	h_s	direct cost o	coefficient for the solar PV power			
	MOEA/D	multiobjective evolutionary algorithm based on	m_h		coefficient for the small-hydro unit power			
		decomposition						
	SMODE	summation based multiobjective differential evolution	K_{Rw}		coefficient for overestimation of wind power			
	SF TG	superiority of feasible solutions thermal power generator	K _{PW}		t coefficient for underestimation of wind power coefficient for over-estimation of solar power			
	WG	wind generator	K _{Rs} K _{Ps}		t coefficient for under-estimation of solar power			
	PV	photovoltaic	K_{Ps} K_{Rsh}		coefficient for combined solar and hydro syste			
	SPH	a solar PV and a small-hydro (run-of-river) power unit	K_{Psh}		t coefficient for combined solar and hydro syste			
	ISO	independent system operator	G_s		nce in W/m ²			
	DDD		~					

Nomenclature						
Abbreviatio	bbreviations					
EED	economic-environmental dispatch	h_s	direct cost coefficient for the solar PV power			
MOEA/D	multiobjective evolutionary algorithm based on	m_h	direct cost coefficient for the small-hydro unit power			
SMODE	decomposition	V	records coefficient for everytimation of wind never			
SMODE	summation based multiobjective differential evolution	K _{Rw}	reserve cost coefficient for overestimation of wind power			
БГ TG	superiority of feasible solutions	K _{Pw}	penalty cost coefficient for underestimation of wind power			
WG	thermal power generator	K _{Rs}	reserve cost coefficient for over-estimation of solar power			
PV	wind generator	K _{Ps}	penalty cost coefficient for under-estimation of solar power			
	photovoltaic	K _{Rsh}	reserve cost coefficient for combined solar and hydro system			
SPH	a solar PV and a small-hydro (run-of-river) power unit	K _{Psh}	penalty cost coefficient for combined solar and hydro system			
ISO	independent system operator	G_s	solar irradiance in W/m^2			
PDF	probability density function	Q_w	river flow rate in m^3/s			
POZ	prohibited operating zone	$f_v(v)$	probability of wind speed v			
		$f_G(G_S)$	probability of solar irradiance G_s			
Symbol		$f_Q(Q_w)$	probability of river flow rate Q_w			
P_{TGi}	power output from the i -th thermal generator	p_{wr}	rated output power of a wind turbine			
P_{ws}	scheduled power from the wind power plant	P_{sr}	rated output power of the solar PV plant			
P _{ss}	scheduled power from the solar PV plant	P_{hr}	rated output power of the small-hydro unit			
P _{ssh}	scheduled power from the combined solar PV and small-hydro unit	α,β	Weibull PDF scale and shape parameters respectively			
P_{wav}	actual available power from the wind power plant	μ, σ	lognormal PDF mean and standard deviation respectively			
Psav	actual available power from the solar PV plant	λ,γ	Gumbel PDF location and scale parameters respectively			
P _{shav}	actual available power from the combined solar PV and small-hydro unit	P _{loss}	real power loss in the network			
g_w	direct cost coefficient for the wind power	VD	cumulative voltage deviation of load buses in the network			
I						

Download English Version:

https://daneshyari.com/en/article/8071926

Download Persian Version:

https://daneshyari.com/article/8071926

Daneshyari.com