Energy 111 (2016) 468-483

Contents lists available at ScienceDirect

Energy

journal homepage: www.elsevier.com/locate/energy

Conceptual design and energy analysis of novel integrated liquefied natural gas and fuel cell electrochemical power plant processes

Mehdi Mehrpooya ^{a, b, *}

^a Renewable Energies and Environment Department, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran ^b Hydrogen and Fuel Cell Laboratory, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran

ARTICLE INFO

Article history: Received 15 December 2015 Received in revised form 25 May 2016 Accepted 30 May 2016

Keywords: Natural gas Liquefaction Absorption refrigeration Waste heat Fuel cell Power plant

ABSTRACT

A novel hybrid combined cooling, heating, fuel cell-steam turbine power plant integrated with a liquefied natural gas process is introduced and analyzed. Precooling vapor compression refrigeration cycle of the liquefaction process is replaced by an absorption refrigeration system which the required hot utility of the cycle, is supplied by the power plant. Results show that the absorption refrigeration systems can be successfully replaced by precooling compression refrigeration cycles in the liquefaction processes. Also applying the absorption refrigeration system, decreases the required power in the process. Hybrid fuel cell power plants can be used for supplying the required power and heat duty in the designed liquefaction process. An integrated solid oxide fuel cell steam turbine power plant is designed and analyzed. The results show that the electrical and overall energy efficiency of the power plant is high. Also SOFC-ST system can provide the required heat duty in the absorption refrigeration system.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Supplying the required refrigeration in the cryogenic processes is one of the most important concerns in design and operation of them. Vapor compression refrigeration cycle is the most conventional method for reaching to the cryogenics temperatures less than -150 °C. As temperature decreases, colder refrigerants (like: ethane, methane and nitrogen) will be required and for refrigerants cooler than the propane, cascade cycles should be applied. In the other hand as number of the cycles increases, overall required power and consequently the required fuel for supplying the required energy increases. In such situation there are some methods which can be used to decrease the required power. The processes used for natural gas liquefaction are of the most important and low temperature ones that need high rate of cryogenic refrigeration. Refrigeration systems used in LNG processes are categorized [1]. They are divided into three categories: single stage, multi stage and cascade. Five of the most conventional LNG processes are investigated by energy and exergy analysis methods [2,3]. High value of the required power in the refrigeration cycle

E-mail address: mehrpoya@ut.ac.ir.

compressors is the most important point which can be investigated for improving the liquefaction efficiency. Also in some cases integration of the liquefaction process with the upstream processes like hydrocarbon recovery process is proposed to decrease the overall required refrigeration [4–6]. A new parameter for evaluating the degree of integration in cryogenic liquid recovery processes is introduced and analyzed [7]. Optimization of the process based on the operating variables is investigated [8–11]. Nitrogen based processes are analyzed for efficiency optimization by compression energy minimization [8]. Propane precooled mixed refrigerant (C3MR) and dual mixed refrigerant (DMR) processes are investigated by thermodynamic and economic optimization. Total power consumption, total investment cost (TCI), total annualized cost (TAC) and total capital cost of the main components are considered as objective functions. In recent years several different modifications has been done on the refrigeration system process configuration and operating condition in order to decrease the initial costs and required power [12–15]. Natural gas liquefaction process performance is assessed by ratio of the consumed power to the produced LNG (kWh kg⁻¹LNG) which is called specific power consumption (SPC). Researches on the process configurations and operating condition are done to decrease the SPC. This parameter varies from 0.2 to 0.6 for various liquefactions processes. For industrial processes this value is about 0.3. Decreasing the SPC to

Autors or the at

^{*} Renewable Energies and Environment Department, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.

	~	~
Δ	6	u
-	U	-

	clature	SPC	specific power consumption
		Т	temperature, K
А	area, m ²	Р	pump
A _{cell}	active area of each cell, cm ²	To	standard temperature, 298 K
As	specific area. m^{-1}	Ufuel	fuel utilization coefficient
AC	air cooler	V	voltage of single cell V
	absorption refrigeration system	V i	voluge of single cen, v
AKS		V-1	
AC	all cooler	VV	work of electric power, kw
ARC	absorption refrigeration cycle	U	overall heat transfer coefficient (kJ °C ⁻¹ hr ⁻¹)
AR	absorption refrigeration		
CB-i	cold box	Greek le	tters
CO-i	air cooler	ΔEx	exergy change, kW
Con-i	condenser	ΔG	Gibbs free energy change, kJ mol $^{-1}$
D ^{eff}	effective diffusion coefficient of species i. $cm^2 s^{-1}$	ΔH	heat of reaction. kI mol $^{-1}$
Dii	binary diffusion coefficient between gas species i and i	А	transfer coefficient 0.5
2.5	$cm^2 s^{-1}$	~	pre-exponential factor of anode or cathode. A $\rm cm^{-2}$
D	Knudson diffusion coefficient of species i $\text{cm}^2 \text{ s}^{-1}$	1	activity coefficient of i th component
D _{i,K}	diffusivity of an exist in the minimum and $z = 1$	Ϋ́i	
D _{i,M}	diffusivity of species I in gas mixture, cm 's	0	
apore	average pore diameter, cm	ε	porosity
E _{thermo}	thermodynamic voltage, V	η_{act}	activation loss, V
Eact	activation energy of anode or cathode, j. mol ⁻¹	η_{conc}	concentration loss, V
Ex	exergy, kW	η_{elec}	electrical efficiency
Ex ^Q	exergy associated with heat transfer, kW	η _{elec(fina}	1) final electrical efficiency
Ex _{ch} m	chemical exergy of mixture, kW	η_{Fx}	second law efficiency
Exai	standard molar chemical exergy, kW	n _{not} over	net overall efficiency
F	Faraday constant 96488.5 °C mol $^{-1}$	net over	overall efficiency
ST i	steam turbine	TOveral	obmic loss V
JI-1 II :	heater	Tohmic	tortuosity
	heat and an area	1	tortuosity $(-1)^{-1}$
HE-I	neat exchanger	o ~	ionic of electronic conductivity, Ω cm
n	specific enthalpy at real condition, kw	ďij	collision diameter of species 1 and J, nm
h ₀	specific enthalpy at environmental condition, kW	$\Omega_{ m D}$	collision diffusion integral
I	exergy loss, kW		
J	current density, A cm ⁻²	Subscrip	ots
Ĵo	exchange current density, A cm ⁻²	a	absorber
K	absorption coefficient (kPa) ⁻¹	ABC	absorption cycle
	reaction rate constant (kmole kg cat s^{-1})(kPa)	AC	electrical power output with conversion to alternating
k	reaction rate constant (knote kg cat 5)(kr a)		
k LHV	lower heating value of fuel, kJ kg $^{-1}$		current
k LHV MR	lower heating value of fuel, kJ kg ^{-1} mixed refrigerant	act	current activation
k LHV MR M _i	lower heating value of fuel, kJ kg ⁻¹ mixed refrigerant molecular weight of species i	act AGR	current activation anode gas recycle
k LHV MR M _i M _{ii}	lower heating value of fuel, kJ kg ⁻¹ mixed refrigerant molecular weight of species i average molecular weight species i and j	act AGR an	current activation anode gas recycle anode
k LHV MR M _{ij} ms	lower heating value of fuel, kJ kg ⁻¹ mixed refrigerant molecular weight of species i average molecular weight species i and j mass flow rate of strong solution, kg hr ⁻¹	act AGR an c	current activation anode gas recycle anode condenser
k LHV MR M _i m _s mr	lower heating value of fuel, kJ kg ⁻¹ mixed refrigerant molecular weight of species i average molecular weight species i and j mass flow rate of strong solution, kg hr ⁻¹ mass flow rate of refrigerant. kg hr ⁻¹	act AGR an c cat	current activation anode gas recycle anode condenser cathode
k LHV MR M _i m _s m _r mfront	lower heating value of fuel, kJ kg ⁻¹ mixed refrigerant molecular weight of species i average molecular weight species i and j mass flow rate of strong solution, kg hr ⁻¹ mass flow rate of refrigerant, kg hr ⁻¹ mass flow rate of fuel kg s ⁻¹	act AGR an c cat ch	current activation anode gas recycle anode condenser cathode chemical
k LHV MR M _i m _i m _r m _{fuel}	lower heating value of fuel, kJ kg ⁻¹ mixed refrigerant molecular weight of species i average molecular weight species i and j mass flow rate of strong solution, kg hr ⁻¹ mass flow rate of refrigerant, kg hr ⁻¹ mass flow rate of fuel, kg s ⁻¹ number of cells	act AGR an c cat ch comp	current activation anode gas recycle anode condenser cathode chemical vapor compression cycle
k LHV MR M _i j m _s m _r N _{cells} n	lower heating value of fuel, kJ kg ⁻¹ mixed refrigerant molecular weight of species i average molecular weight species i and j mass flow rate of strong solution, kg hr ⁻¹ mass flow rate of refrigerant, kg hr ⁻¹ mass flow rate of fuel, kg s ⁻¹ number of cells moles number of electron transferred	act AGR an c cat ch comp con	current activation anode gas recycle anode condenser cathode chemical vapor compression cycle power consumption
k LHV MR M _{ij} m _s m _r M _{fuel} N _{cells} n _e	lower heating value of fuel, kJ kg ⁻¹ mixed refrigerant molecular weight of species i average molecular weight species i and j mass flow rate of strong solution, kg hr ⁻¹ mass flow rate of refrigerant, kg hr ⁻¹ mass flow rate of fuel, kg s ⁻¹ number of cells moles number of electron transferred moles rate of species i mol s ⁻¹	act AGR an c cat ch comp con	current activation anode gas recycle anode condenser cathode chemical vapor compression cycle power consumption
k LHV MR M _{ij} m _s m _r M _{fuel} N _{cells} n _e n _i R	lower heating value of fuel, kJ kg ⁻¹ mixed refrigerant molecular weight of species i average molecular weight species i and j mass flow rate of strong solution, kg hr ⁻¹ mass flow rate of refrigerant, kg hr ⁻¹ mass flow rate of fuel, kg s ⁻¹ number of cells moles number of electron transferred moles rate of species i, mol s ⁻¹ total procure har	act AGR an c cat ch comp con CS	current activation anode gas recycle anode condenser cathode chemical vapor compression cycle power consumption carbon steel cooling water
k LHV MR M _{ij} m _s m _r M _{fuel} N _{cells} n _e n _i P	lower heating value of fuel, kJ kg ⁻¹ mixed refrigerant molecular weight of species i average molecular weight species i and j mass flow rate of strong solution, kg hr ⁻¹ mass flow rate of refrigerant, kg hr ⁻¹ mass flow rate of fuel, kg s ⁻¹ number of cells moles number of electron transferred moles rate of species i, mol s ⁻¹ total pressure, bar	act AGR an c cat ch comp con CS cw	current activation anode gas recycle anode condenser cathode chemical vapor compression cycle power consumption carbon steel cooling water
k LHV MR M_{ij} m_s m_r m_{fuel} N_{cells} n_e n_i P P_i	lower heating value of fuel, kJ kg ⁻¹ mixed refrigerant molecular weight of species i average molecular weight species i and j mass flow rate of strong solution, kg hr ⁻¹ mass flow rate of refrigerant, kg hr ⁻¹ mass flow rate of fuel, kg s ⁻¹ number of cells moles number of electron transferred moles rate of species i, mol s ⁻¹ total pressure, bar partial pressure of species i, bar	act AGR an c cat ch comp con CS cw e	current activation anode gas recycle anode condenser cathode chemical vapor compression cycle power consumption carbon steel cooling water evaporator, electron
k LHV MR M_{ij} m_s m_r m_{fuel} N_{cells} n_e n_i P P_i P_o *	lower heating value of fuel, kJ kg ⁻¹ mixed refrigerant molecular weight of species i average molecular weight species i and j mass flow rate of strong solution, kg hr ⁻¹ mass flow rate of refrigerant, kg hr ⁻¹ mass flow rate of fuel, kg s ⁻¹ number of cells moles number of electron transferred moles rate of species i, mol s ⁻¹ total pressure, bar partial pressure of species i, bar standard pressure, 1 atm	act AGR an c cat ch comp con CS cw e elec	current activation anode gas recycle anode condenser cathode chemical vapor compression cycle power consumption carbon steel cooling water evaporator, electron electrical efficiency
k LHV MR M_{ij} m_s m_r m_{fuel} N_{cells} n_e n_i P P_i P_o p_1^*	lower heating value of fuel, kJ kg ⁻¹ mixed refrigerant molecular weight of species i average molecular weight species i and j mass flow rate of strong solution, kg hr ⁻¹ mass flow rate of refrigerant, kg hr ⁻¹ mass flow rate of fuel, kg s ⁻¹ number of cells moles number of electron transferred moles rate of species i, mol s ⁻¹ total pressure, bar partial pressure of species i, bar standard pressure, 1 atm reaction site partial pressure of species i, bar	act AGR an c cat ch comp con CS cw e elec fuel	current activation anode gas recycle anode condenser cathode chemical vapor compression cycle power consumption carbon steel cooling water evaporator, electron electrical efficiency fuel inlet to system
k LHV MR M_{ij} m_s m_r m_{fuel} N_{cells} n_e n_i P P_i P_0 p_1^* p_1^0	lower heating value of fuel, kJ kg ⁻¹ mixed refrigerant molecular weight of species i average molecular weight species i and j mass flow rate of strong solution, kg hr ⁻¹ mass flow rate of refrigerant, kg hr ⁻¹ mass flow rate of fuel, kg s ⁻¹ number of cells moles number of electron transferred moles rate of species i, mol s ⁻¹ total pressure, bar partial pressure of species i, bar standard pressure, 1 atm reaction site partial pressure of species i, bar bulk partial pressure of species i, bar	act AGR an c cat ch comp con CS cw e elec fuel g	current activation anode gas recycle anode condenser cathode chemical vapor compression cycle power consumption carbon steel cooling water evaporator, electron electrical efficiency fuel inlet to system generator
k LHV MR M_{ij} m_s m_r m_{fuel} N_{cells} n_e n_i P P_i P_0 p_1^{0} p_1^{0} P-i	lower heating value of fuel, kJ kg ⁻¹ mixed refrigerant molecular weight of species i average molecular weight species i and j mass flow rate of strong solution, kg hr ⁻¹ mass flow rate of refrigerant, kg hr ⁻¹ mass flow rate of fuel, kg s ⁻¹ number of cells moles number of electron transferred moles rate of species i, mol s ⁻¹ total pressure, bar partial pressure of species i, bar standard pressure, 1 atm reaction site partial pressure of species i, bar bulk partial pressure of species i, bar	act AGR an c cat ch comp con CS cw e elec fuel g HHV	current activation anode gas recycle anode condenser cathode chemical vapor compression cycle power consumption carbon steel cooling water evaporator, electron electrical efficiency fuel inlet to system generator higher heating value of fuel
k LHV MR M_{ij} m_s m_r m_{fuel} N_{cells} n_e n_i P P_i P_0 p_{1}^{0} p_{-1}^{0} P-i R	lower heating value of fuel, kJ kg ⁻¹ mixed refrigerant molecular weight of species i average molecular weight species i and j mass flow rate of strong solution, kg hr ⁻¹ mass flow rate of refrigerant, kg hr ⁻¹ mass flow rate of fuel, kg s ⁻¹ number of cells moles number of electron transferred moles rate of species i, mol s ⁻¹ total pressure, bar partial pressure of species i, bar standard pressure, 1 atm reaction site partial pressure of species i, bar bulk partial pressure of species i, bar pump gas constant, 8.314 j mol ⁻¹ K ⁻¹ ,	act AGR an c cat ch comp con CS cw e elec fuel g HHV in	current activation anode gas recycle anode condenser cathode chemical vapor compression cycle power consumption carbon steel cooling water evaporator, electron electrical efficiency fuel inlet to system generator higher heating value of fuel inlet
k LHV MR M_{ij} m_s m_r m_{fuel} N_{cells} n_e n_i P P_i P_0 p_1^0 P-i R	lower heating value of fuel, kJ kg ⁻¹ mixed refrigerant molecular weight of species i average molecular weight species i and j mass flow rate of strong solution, kg hr ⁻¹ mass flow rate of refrigerant, kg hr ⁻¹ mass flow rate of fuel, kg s ⁻¹ number of cells moles number of electron transferred moles rate of species i, mol s ⁻¹ total pressure, bar partial pressure of species i, bar standard pressure, 1 atm reaction site partial pressure of species i, bar bulk partial pressure of species i, bar pump gas constant, 8.314 j mol ⁻¹ K ⁻¹ , 83.14 cm ³ bar mol ⁻¹ K ⁻¹	act AGR an c cat ch comp con CS cw e elec fuel g HHV in k	current activation anode gas recycle anode condenser cathode chemical vapor compression cycle power consumption carbon steel cooling water evaporator, electron electrical efficiency fuel inlet to system generator higher heating value of fuel inlet kinetic
k LHV MR M_{ij} m_s m_r m_{fuel} N_{cells} n_e n_i P P_i P_0 p_1^0 P-i R R_{H2}	lower heating value of fuel, kJ kg ⁻¹ mixed refrigerant molecular weight of species i average molecular weight species i and j mass flow rate of strong solution, kg hr ⁻¹ mass flow rate of refrigerant, kg hr ⁻¹ mass flow rate of fuel, kg s ⁻¹ number of cells moles number of electron transferred moles rate of species i, mol s ⁻¹ total pressure, bar partial pressure of species i, bar standard pressure, 1 atm reaction site partial pressure of species i, bar bulk partial pressure of species i, bar pump gas constant, 8.314 j mol ⁻¹ K ⁻¹ , 83.14 cm ³ bar mol ⁻¹ K ⁻¹	act AGR an c cat ch comp con CS cw e elec fuel g HHV in k out	current activation anode gas recycle anode condenser cathode chemical vapor compression cycle power consumption carbon steel cooling water evaporator, electron electrical efficiency fuel inlet to system generator higher heating value of fuel inlet kinetic outlet
k LHV MR M_{ij} m_s m_r m_{fuel} N_{cells} n_e n_i P P_i P_0 p_1^0 P-i R R_{H2} R_r	lower heating value of fuel, kJ kg ⁻¹ mixed refrigerant molecular weight of species i average molecular weight species i and j mass flow rate of strong solution, kg hr ⁻¹ mass flow rate of refrigerant, kg hr ⁻¹ mass flow rate of fuel, kg s ⁻¹ number of cells moles number of electron transferred moles rate of species i, mol s ⁻¹ total pressure, bar partial pressure of species i, bar standard pressure, 1 atm reaction site partial pressure of species i, bar bulk partial pressure of species i, bar pump gas constant, 8.314 j mol ⁻¹ K ⁻¹ , 83.14 cm ³ bar mol ⁻¹ K ⁻¹ reforming reaction rate, mol. m ⁻³ s ⁻¹	act AGR an c cat ch com CS cw e elec fuel g HHV in k out p	current activation anode gas recycle anode condenser cathode chemical vapor compression cycle power consumption carbon steel cooling water evaporator, electron electrical efficiency fuel inlet to system generator higher heating value of fuel inlet kinetic outlet potential
k LHV MR M_{ij} m_s m_r m_{fuel} N_{cells} n_e n_i P P_i P_0 p_1^0 P-i R R_{H2} R_r R_s	lower heating value of fuel, kJ kg ⁻¹ mixed refrigerant molecular weight of species i average molecular weight species i and j mass flow rate of strong solution, kg hr ⁻¹ mass flow rate of refrigerant, kg hr ⁻¹ mass flow rate of fuel, kg s ⁻¹ number of cells moles number of electron transferred moles rate of species i, mol s ⁻¹ total pressure, bar partial pressure of species i, bar standard pressure, 1 atm reaction site partial pressure of species i, bar bulk partial pressure of species i, bar pump gas constant, 8.314 j mol ⁻¹ K ⁻¹ , 83.14 cm ³ bar mol ⁻¹ K ⁻¹ electrochemical reaction rate of H ₂ , mol cm ⁻² s ⁻¹ reforming reaction rate, mol. m ⁻³ s ⁻¹	act AGR an c cat ch comp con CS cw e elec fuel g HHV in k out p ph	current activation anode gas recycle anode condenser cathode chemical vapor compression cycle power consumption carbon steel cooling water evaporator, electron electrical efficiency fuel inlet to system generator higher heating value of fuel inlet kinetic outlet potential physical
k LHV MR M_{ij} m_s m_r m_{fuel} N_{cells} n_e p_1 P_i P_i P_1 P_1 P_1 P_1 R_1 R_1 R_1 R_1 R_2 R_1 R_2 R_1 R_2 R_1 R_2 R_2 R_2	lower heating value of fuel, kJ kg ⁻¹ mixed refrigerant molecular weight of species i average molecular weight species i and j mass flow rate of strong solution, kg hr ⁻¹ mass flow rate of refrigerant, kg hr ⁻¹ mass flow rate of fuel, kg s ⁻¹ number of cells moles number of electron transferred moles rate of species i, mol s ⁻¹ total pressure, bar partial pressure of species i, bar standard pressure, 1 atm reaction site partial pressure of species i, bar bulk partial pressure of species i, bar pump gas constant, 8.314 j mol ⁻¹ K ⁻¹ , 83.14 cm ³ bar mol ⁻¹ K ⁻¹ electrochemical reaction rate of H ₂ , mol cm ⁻² s ⁻¹ reforming reaction rate, mol. m ⁻³ s ⁻¹ Reboiler	act AGR an c cat ch comp CS cw e lec fuel g HHV in k out p ph real	current activation anode gas recycle anode condenser cathode chemical vapor compression cycle power consumption carbon steel cooling water evaporator, electron electrical efficiency fuel inlet to system generator higher heating value of fuel inlet kinetic outlet potential physical real condition
k LHV MR M_{ij} m_s m_r m_{fuel} N _{cells} n_e n_i P P_i P_i P_i P_i P_i R_1 R_1 R_1 R_1 R_2 R_1 R_2 R_2 R_1 R_2 R_3 R_4 R_2 R_2 R_3 R_4 R_2 R_3 R_4 R_2 R_3 R_4 R_2 R_3 R_4 R_2 R_3 R_4 R_5	lower heating value of fuel, kJ kg ⁻¹ mixed refrigerant molecular weight of species i average molecular weight species i and j mass flow rate of strong solution, kg hr ⁻¹ mass flow rate of refrigerant, kg hr ⁻¹ mass flow rate of fuel, kg s ⁻¹ number of cells moles number of electron transferred moles rate of species i, mol s ⁻¹ total pressure, bar partial pressure of species i, bar standard pressure, 1 atm reaction site partial pressure of species i, bar bulk partial pressure of species i, bar pump gas constant, 8.314 j mol ⁻¹ K ⁻¹ , 83.14 cm ³ bar mol ⁻¹ K ⁻¹ electrochemical reaction rate of H ₂ , mol cm ⁻² s ⁻¹ reforming reaction rate, mol. m ⁻³ s ⁻¹ Reboiler specific entropy at real condition. kW K ⁻¹	act AGR an c cat ch comp con CS cw e lec fuel g HHV in k out p ph real SC	current activation anode gas recycle anode condenser cathode chemical vapor compression cycle power consumption carbon steel cooling water evaporator, electron electrical efficiency fuel inlet to system generator higher heating value of fuel inlet kinetic outlet potential physical real condition steam cycle
k LHV MR M_{ij} m_s m_r m_{fuel} N _{cells} n_e n_i P P_i P_i P_i P-i R R_r R_s Re S T-i	lower heating value of fuel, kJ kg ⁻¹ mixed refrigerant molecular weight of species i average molecular weight species i and j mass flow rate of strong solution, kg hr ⁻¹ mass flow rate of refrigerant, kg hr ⁻¹ mass flow rate of fuel, kg s ⁻¹ number of cells moles number of electron transferred moles rate of species i, mol s ⁻¹ total pressure, bar partial pressure of species i, bar standard pressure, 1 atm reaction site partial pressure of species i, bar bulk partial pressure of species i, bar gas constant, 8.314 j mol ⁻¹ K ⁻¹ , 83.14 cm ³ bar mol ⁻¹ K ⁻¹ electrochemical reaction rate of H ₂ , mol cm ⁻² s ⁻¹ reforming reaction rate, mol. m ⁻³ s ⁻¹ shift reaction rate, mol. m ⁻³ s ⁻¹ Reboiler specific entropy at real condition, kW K ⁻¹ tower	act AGR an c cat ch comp con CS cw e lec fuel g HHV in k out p ph real SC SS	current activation anode gas recycle anode condenser cathode chemical vapor compression cycle power consumption carbon steel cooling water evaporator, electron electrical efficiency fuel inlet to system generator higher heating value of fuel inlet kinetic outlet potential physical real condition steam cycle stainless steel
k LHV MR M_{ij} m_s m_r m_{fuel} Ncells n_e n_i P P_i P_i P_i P P_i R R R R R R R R R R	lower heating value of fuel, kJ kg ⁻¹ mixed refrigerant molecular weight of species i average molecular weight species i and j mass flow rate of strong solution, kg hr ⁻¹ mass flow rate of refrigerant, kg hr ⁻¹ mass flow rate of fuel, kg s ⁻¹ number of cells moles number of electron transferred moles rate of species i, mol s ⁻¹ total pressure, bar partial pressure of species i, bar standard pressure, 1 atm reaction site partial pressure of species i, bar bulk partial pressure of species i, bar gas constant, 8.314 j mol ⁻¹ K ⁻¹ , 83.14 cm ³ bar mol ⁻¹ K ⁻¹ electrochemical reaction rate of H ₂ , mol cm ⁻² s ⁻¹ reforming reaction rate, mol. m ⁻³ s ⁻¹ shift reaction rate, mol. m ⁻³ s ⁻¹ Reboiler specific entropy at real condition, kW K ⁻¹	act AGR an c cat ch comp con CS cw e lec fuel g HHV in k out p h real SC SS ST	current activation anode gas recycle anode condenser cathode chemical vapor compression cycle power consumption carbon steel cooling water evaporator, electron electrical efficiency fuel inlet to system generator higher heating value of fuel inlet kinetic outlet potential physical real condition steam cycle stainless steel steam turbine
k LHV MR M_{ij} m_s m_r m_{fuel} N _{cells} n_e n_i P P_i P_0 p_1^0 P^-i R R_r	lower heating value of fuel, kJ kg ⁻¹ mixed refrigerant molecular weight of species i average molecular weight species i and j mass flow rate of strong solution, kg hr ⁻¹ mass flow rate of refrigerant, kg hr ⁻¹ mass flow rate of fuel, kg s ⁻¹ number of cells moles number of electron transferred moles rate of species i, mol s ⁻¹ total pressure, bar partial pressure of species i, bar standard pressure, 1 atm reaction site partial pressure of species i, bar bulk partial pressure of species i, bar pump gas constant, 8.314 j mol ⁻¹ K ⁻¹ , 83.14 cm ³ bar mol ⁻¹ K ⁻¹ electrochemical reaction rate of H ₂ , mol cm ⁻² s ⁻¹ reforming reaction rate, mol. m ⁻³ s ⁻¹ shift reaction rate, mol. m ⁻³ s ⁻¹ Reboiler specific entropy at real condition, kW K ⁻¹ tower	act AGR an c cat ch comp con CS cw e lec fuel g HHV in k out p h real SC SS ST	current activation anode gas recycle anode condenser cathode chemical vapor compression cycle power consumption carbon steel cooling water evaporator, electron electrical efficiency fuel inlet to system generator higher heating value of fuel inlet kinetic outlet potential physical real condition steam cycle stainless steel steam turbine

Download English Version:

https://daneshyari.com/en/article/8073276

Download Persian Version:

https://daneshyari.com/article/8073276

Daneshyari.com