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• We developed an analytical model to determine the shape of inflatable catheter.
• The devices integrated on the catheter can be located by the mechanics model.
• The latitudinal elongation is much larger than the longitudinal elongation of inflated catheter.
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a b s t r a c t

The balloon-based catheters are attractive for the minimally invasive procedures because these catheters
can be configured to match requirements on size and shape for the interaction with the soft tissue. An
analytical mechanic model is developed for the deformed balloon to determine the shape of the inflated
catheter. The bridges along latitudinal direction should be high stretchable due to the high elongation
along the latitude of the inflatable catheter. These results agree well with the finite element method
without any parameter fitting.

© 2015 The Authors. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and
Applied Mechanics. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).

Catheters are widely-used surgical tools for minimally invasive
procedures to improve human health [1–6]. Devices and sensors
are integrated on catheters to establish biocompatible interfaces
between the semiconductor devices and the soft, curvilinear
surfaces of the body. Balloon-based catheters are designed as
heterogeneous collections of minimally-invasive medical devices
which are integrated on the deformable skin of catheters. As
shown in Fig. 1, the balloon-based catheters can be stretched up
to 200% [7]. The limitation of the integration of electronic system
is overcome to integrate devices and sensors on the catheter due
to the high stretchability of the catheter skin. Consequently, a key
point of the balloon-based catheter is to determine the locations
of the different devices and the elongation between the devices
while the catheters are inflated, which is necessary for the use of
catheters during procedures.

As shown in Fig. 2(a), the deflated catheter is cylindrical, whose
length and radius are 2L and R0, respectively. After air is blown into
catheter, the catheter skin will be expanded to a balloon, whose
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maximum radius is R shown in Fig. 2(b). The inner layer of catheter
is almost undeformed since the inner layer is much thicker than
the catheter skin, and the length of inflated catheter is fixed as
2L during the catheter skin expanding, which cross section can be
described as an ellipse,
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where a, R are the lengths of the semi-major axis and semi-mini
axis, respectively. The coordinates x, y are along the directions
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radius of deflated catheter satisfy the relationship, L2
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The angle, θ , between the x axis and the tangent direction of the
ellipse is given by
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The arc length of the ellipse, ds, is
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Fig. 1. Multifunctional inflatable balloon-based catheter. (a) Optical image of a
stretchable, interconnected mesh integrated on a deflated catheter; (b) optical
image of the inflated balloon catheter.

Fig. 2. Schematic diagrams of the balloon catheters. (a) Deflated catheter with
outer and inner layers; (b) inflated catheter with ellipse and undeformed inner
layer.

Fig. 3. The normalized pressure, pR0
Eh , versus the ratio, R/R0 , for R0/L = 0.2, 0.44,

and 0.6.

which is deformed from the initial length dX of the cylindrical shell.
The relationship between ds and dX can be given by the elongation
ε along the tangent direction of the ellipse as

dX =
ds

1 + ε
. (4)

The equilibrium equation along x axial direction can be obtained
from an ellipsoidal shell [8] as tcosθ +

 L
x pdy = 0, where p, t are

the pressure of blown air and the stress along the tangent direction
of balloon catheter, respectively. The stress can be derived from the
above equilibrium equation as

t = pR0
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The stress is related to the elongation by the constitutive
relationship, t = Ehε, where E, h are the elastic modulus and
thickness of the catheter skin.

The initial length X can be given as in Box I.

Because the normalized pressure satisfied the condition, pR0
Eh ≪ 1,

Eq. (6) can be expanded as the Taylor series of the normalized
pressure, pR0

Eh , as
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The normalized pressure, pR0
Eh , can be obtained from the condition

of the fixed-length of the inflated balloon catheter (X = L at x = L)

as in Box II where E
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is

the incomplete elliptic integral of the second kind. Figure 3 shows
that the normalized pressure is almost linearly dependent on the
ratio R

R0
while the ratio R0

L is small.
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