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h i g h l i g h t s

• An acoustomechanical theory for semicrystalline polymers is established.
• We demonstrate that acoustic radiation force is capable of causing giant deformation in these materials.
• We demonstrate that pull-in instability can be acoustically triggered even if the in-plane mechanical force is fixed.
• The findings of this study enable reliability design of novel acoustic actuated devices.
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a b s t r a c t

We develop an acoustomechanical theory for semicrystalline polymers and demonstrate that acoustic
radiation force is capable of causing giant deformation in these materials. When a polymer layer is
subjected to combined tensile mechanical force in plane and acoustic force (sound pressure) through
thickness, it becomes initially homogeneously thin but soon inhomogeneous when the two forces reach
critical conditions. Critical conditions for such acoustomechanical instability are theoretically determined
based on the J2-deformation theory. We demonstrate that pull-in instability can be acoustically triggered
even if the in-plane mechanical force is fixed. Bifurcation in the critical condition for acoustomechanical
instability occurswhen the polymer exhibits sufficiently large hardening. The findings of this study enable
reliability design of novel acoustic actuated devices.

© 2016 The Authors. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and
Applied Mechanics. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).

Semicrystalline polymers are extensively applied in electrome-
chanical devices, due to their superior performance on large
mechanical actuation induced by external stimuli such as elec-
tric/magnetic field, temperature, and mechanical stress [1–3].
For such applications, failures like necking and pull-in instabil-
ity should be avoided, since excessive thinning down of polymer
films often happenswhen actuated by external stimuli. As previous
studies mainly focused upon electrical actuation and electrome-
chanical instability of semicrystalline polymers, there is a basic
lack of understanding of their acoustic actuation and acoustome-
chanical instability. Innovative design of acoustic actuated devices
urgently calls for theoretical guideline on acoustomechanical be-
havior of semicrystalline polymers.
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This paper aims to investigate the acoustic actuation and acous-
tomechanical instability of semicrystalline polymers subjected to
combined mechanical force and ultrasound pressure. The focus is
placed upon critical conditions for mechanically induced necking
instability at prescribed acoustic inputs and acoustically induced
pull-in instability at prescribed mechanical forces.

As illustrated in Fig. 1, we consider a thin layer of semicrys-
talline polymer having thickness H and in-plane dimensions L × L
in undeformed state.When the polymer is subjected to equal biax-
ial mechanical forces in plane and two opposing ultrasound wave
inputs along thickness direction, it deforms to current state with
dimensions (Hλ, L/

√
λ, L/

√
λ). The polymer is assumed nearly in-

compressible, which can support acoustic wave penetration. The
constraint of incompressibility simplifies significantly subsequent
theoretical analysis. This assumption generally holds true since the
volume change of semicrystalline polymer ismuch smaller than its
shape change, even at large deformation.

As the propagation of ultrasound wave in a semicrystalline
polymer is accompanied by acoustical momentum transfer be-
tween adjacentmedium particles, a steady time-averaged acoustic
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Fig. 1. (Color online) (a) A thin layer of semicrystalline polymer in undeformed
state with dimensions (H , L, L); (b) deformation of polymer under acoustic loads
and equal biaxial mechanical forces in current state with dimensions (Hλ, L/

√
λ,

L/
√

λ).

radiation stress is generated along wave propagation path in the
medium, which can be expressed as [4–8]


Tij


=

 
p2


2ρac2a

−
ρa ⟨uk · uk⟩

2


δij + ρa


ui · uj


, (1)

where Tij is the momentum flux tensor, δij is the Kronecker delta,
ρa is the medium density, ca is the acoustic speed at equilibrium
state, p is the acoustic pressure, and ui is themediumvelocity in the
i-direction. Note that when excited by acoustic input having high
enough acoustic frequencies (e.g.,≥106 Hz, far exceeding common
mechanical frequencies), deformation of a material is governed by
acoustic radiation stress, which is simply the mean momentum
flux tensor


Tij


= (ω/2π)

 2π/ω

0 Tijdt , ω being angular frequency.
Themagnitude of typical focused acoustic pressure falls within the
range of 0.1–4 MPa. Correspondingly, the acoustic radiation stress
scaled as p20/


2ρac2a


can reach 70247–112 MPa in air, which is

sufficient to cause large deformation of semicrystalline polymers
since these materials often have an elastic modulus around mega
Pascal [9–12].

Accounting for both the nonlinear elastic behavior of semicrys-
talline polymers and acoustic radiation stress, wewrite the Cauchy
stress in the material as

σij = FiK
∂W (F)

∂FjK
−
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
, (2)

where FiK = ∂xi/∂XK is the deformation gradient and W (F)
the Helmholtz free energy function. We adopt the J2-deformation
theory [13] to consider the nonlinear deformation, obtaining
thence W (F) = K (ln λ)N+1 / (N + 1) for which the parameters
K and N can be obtained from experimental stress versus
strain curves. K scales with polymer yield strength, thus much
smaller than polymer elastic modulus.N describes polymer strain-
hardening.N = K = 1 corresponds to linear elasticitywhileN = 0
corresponds to ideal plasticity. For semicrystalline polymers, N
typically varies between 0.1 and 0.6 [14,15].

Since the semicrystalline polymer is taken as nearly incom-
pressible, its deformation state under equal biaxial forces and
acoustic inputs will remain almost unchanged if a hydrostatic
stress is superimposed. Therefore, the deformation state under the
combined loads is approximately equivalent to that under uni-
axial compressive stressing, as illustrated in Fig. 2. Following the
J2-deformation theory, the true logarithmic strain is expressed as
ε = ln λ when extension and ε = − ln λ when compression.
Therefore, nonlinear large deformation of the semicrystalline poly-
mer can be described as

σ + (t1 − t3) = K (− ln λ)N , (3)

where the Cauchy stress σ = f /

HL

√
λ

, the acoustic radiation

stress t1 = 1/ (Hλ)
 Hλ

0 ⟨T11 (z)⟩ dz and t3 =

T inside
33 (Hλ)


−


T outside
33 (Hλ)


·

T inside
33


is acoustic radiation stress in the polymer

while

T outside
33


is acoustic radiation stress in the surrounding

medium. Accordingly, the stress versus strain relation can be
rewritten as

f

HL
√

λ
+ (t1 − t3) = K (− ln λ)N . (4)

This nonlinear equation actually contains the combined effects
of material hardening and geometric nonlinearity on polymer
deformation. Material hardening (i.e., monotonic increase of stress
with increasing strain) is modeled by relation K (− ln λ)N . By
contrast, geometric nonlinearity is reflected by 1/

√
λ and the

implicit inclusion of t1 (λ) and t3 (λ).
To proceed further, the normalized mechanical force F(=

f /(KHL)) and normalized acoustic force Y (=p20/

Kρ0c20


) can be

expressed as functions of stretch λ, as

F (λ) =
√

λ (− ln λ)N − Y
√

λ (t1 − t3)


p20
ρ0c20

−1

, (5)
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1

t1 − t3

p20
ρ0c20


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1
√

λ


. (6)

Eq. (5) specifies the dependence of F on λ at prescribed acoustic
inputwhile Eq. (6) specifies the dependence of Y on λ at prescribed
mechanical force.

Variations of F and Y with λ are presented separately in
Fig. 3(a) and (b), the former at fixed acoustic force and the latter
at fixed mechanical force. Overall, the variation trends of these
force–stretch curves stem from the competition between material
hardening and geometric nonlinearity. In small deformation
regime (λ ≈ 1), material hardening dominates, causing both
curves to increase monotonically. In large deformation regime
(λ ≪ 1), geometric nonlinearity dominates, causing the curves
to decease, during which the softening effect offsets the material
hardening effect. Competition of the two counteracting effects
induces a peak on each force–stretch curve, thus giving rise to
the critical condition for acoustomechanical instability to occur.
Peaks in Fig. 3(a) correspond to necking instabilities caused by
mechanical tensile force at fixed acoustic forces, whereas peaks
in Fig. 3(b) correspond to pull-in instabilities caused by acoustic
compressive force at fixed mechanical forces. As the prescribed
acoustic force is increased, the critical mechanical force deceases
but the critical stretch increases (Fig. 3(a)). In contrast, both the
critical acoustic force and critical stretch decrease as the prescribed
mechanical force is increased (Fig. 3(b)).

As acoustomechanical instability occurs when the incremental
stiffness turns from positive to negative, we can determine the
critical condition by setting ∂F (λ) /∂λ = 0 at fixed Y or
∂Y (λ) /∂λ = 0 at fixed F . For the problem of Fig. 1, the critical
condition of mechanical force–stretch relation is
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1
2 (− ln λc)

N
− N (− ln λc)

N−1

1
2 (t1 − t3) + λc

∂(t1−t3)
∂λc
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and the critical condition of acoustic force–stretch relation is
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2

c
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Eqs. (7) and (8) generalize the critical condition of necking
instability induced by tensile mechanical force and the critical
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