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a b s t r a c t

This work investigates the discrete kernel approach for evaluating the contribution of the variance of
discrete input variables to the variance of model output, via analysis of variance (ANOVA) decomposition.
Until recently only the continuous kernel approach has been applied as a metamodeling approach within
sensitivity analysis framework, for both discrete and continuous input variables. Now the discrete kernel
estimation is known to be suitable for smoothing discrete functions. We present a discrete non-
parametric kernel estimator of ANOVA decomposition of a given model. An estimator of sensitivity
indices is also presented with its asymtotic convergence rate. Some simulations on a test function
analysis and a real case study from agricultural have shown that the discrete kernel approach outper-
forms the continuous kernel one for evaluating the contribution of moderate or most influential discrete
parameters to the model output.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the literature many works about reliability analysis approa-
ches in general, and sensitivity analysis (SA) methods more spe-
cially, are related to different problems such as the important case
of non-independent random inputs [6] and have various applica-
tion domains such as maritime industry [19] or environment [14].
In most cases, a mathematical modeling of the studied system is
frequently revealed to be useful when the variations of input
parameters in a model imply a large variability of the results with
some impacts on their accuracy. In this context, the probabilistic
way is of interest to encompass the variation in the input para-
meters of the model. SA methods are then useful to conduct such a
study since they aim to evaluate how the variation of input
parameters contributes to the variation of the output of a model.
Particularly, works in SA have highlighted the encountered inter-
esting aspect concerning the evaluation of the influence of discrete
(categorical or ordinal) inputs. Indeed, in system reliability studies,
several models involving in various engineering contexts have
input discrete variables. And, one of the reliability engineering
issues is to accurately evaluate the influence of such parameters.

Amongst various SA approaches, let us consider a well-known
method based on the analysis of variance (ANOVA) decomposition

of model f for quantifying the influence of input Xi;i ¼ 1;2;…;kAT on
the output YAR. That method consists of the calculation of sen-
sitivity indices given by [18] such that

Si ¼
VfEðY jXiÞg

VðYÞ ; Sij ¼
VfEðY jXi;XjÞg

VðYÞ ;… ð1Þ

The measure of first order Si evaluates the contribution of the var-
iation of Xi to the total variance of Y, the measure of second order Sij
evaluates the contribution of the interaction of Xi and Xj on the
output, and so on. Various statistical tools as splines, generalized
linear or additive model, polynomial are useful in a metamodeling
approach for providing an estimation of conditional expectation Eð
Y jXiÞ and, consequently, of the main effect sensitivity measure Si
[4]. In the framework of the non-parametric smoothing, some
methods as the continuous kernel-based estimation [16] or the
State-Dependent Parameter estimation [13] are good choices for
estimating EðY jXiÞ. About the two estimation methods, [15,20] are
respectively one of the original references of nonparametric and
state-dependent parameter estimates. Nowadays [11] have shown
that continuous kernel estimation is equal or better than the SDP
estimation in terms of performance. However until recently in the
literature the continuous kernel estimation is evenly applied on
continuous input variables as on discrete ones while discrete kernel
estimation suitable for discrete functions is now known [7].

The discrete associated kernel method was developed for
smoothing discrete functions as probability mass functions (pmf)
or count regression functions on a discrete support T such as
T¼N, the set of positive integers, or T¼Z, the set of integers. For
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a fixed target x on discrete support T and a smoothing parameter
h40, this method is based on the definition of the discrete asso-
ciated kernel Kx;hð�Þ which is a pmf of random variable (rv) K x;h

with support Sx satisfying

xASx ðA1Þ;
lim
h-0

EðK x;hÞ ¼ x ðA2Þ;

lim
h-0

VðK x;hÞ ¼ 0 ðA3Þ:

These three assumptions, fulfilled by both continuous and discrete
kernels, insure good asymptotic properties for the corresponding
kernel estimator [10]. Thus, for ða; xÞAN� T and h40, an exam-
ple of discrete associated kernel is the discrete symmetric trian-
gular one with rv K a;x;h on support Sx ¼ fx�a;…; x�1; x; x þ1;…
; xþag with a pmf given by

PrðK a;x;h ¼ zÞ ¼ ðaþ1Þh�jy�xj h
Pða;hÞ ; zASx;

with Pða;hÞ ¼ ð2aþ1Þðaþ1Þh�2
Pa

k ¼ 1 k
h a normalizing constant.

From the discrete kernel methodology, a discrete non-parametric
estimator of EðY jXiÞ was proposed by [1] adapted from the con-
tinuous version of [12,22] as follows:

bmnðx;hÞ ¼
Xn
i ¼ 1

YiKx;hðXiÞPn
j ¼ 1 Kx;hðXjÞ

;

with the arbitrary sequence of smoothing parameters h¼ hðnÞ40
fulfilling limn-1hðnÞ ¼ 0 and Kx;hð�Þ a discrete associated kernel as
defined previously.

In this paper the non-parametric regression estimator bmn using
a discrete symmeric triangular kernel is investigated as a novel
approach in SA methods for providing estimated sensitivity indi-
ces for discrete input variables Xi. Thus, the discrete kernel esti-
mation approach is studied as a contribution to reliability analysis
for model with discrete input parameters. To illustrate the per-
formance of discrete kernel approach in comparison to continuous
kernel approach, some simulations are realized using Ishigami test
function and an application is proposed on a real case from agri-
cultural. That latter concerns the evaluation of the influence of
some parameters on the environmental impacts generated during
the Hemp Crop production by farmers [2].

2. Non-parametric discrete triangular regression

This section presents first a review of the non-parametric
univariate regression estimator using symmetric discrete trian-
gular kernel with the asymptotic expansion of its global squared
error as presented by [3]. Herein, the optimal convergence rate of
the discrete triangular regression estimator is added.

Assume that ðX1;Y1Þ; ðX2;Y2Þ;…; ðXn;YnÞ are n independent
copies of (X,Y) defined on TðDZÞ � R. We are interested in the
non-parametric regression model

Y ¼mðXÞþϵ;

wheremð�Þ ¼ EðY jX ¼ �Þ is an unknown regression function and the
random covariate X is independent of the unobservable error
variable ϵ's assumed to have zero mean and finite variance. For
aAN, a fixed point xAT and a smoothing parameter h40, let us
consider the discrete non-parametric estimator bmn of m defined in
(2) using a discrete triangular symmetric kernel such that

bmnða; x;hÞ ¼
Xn
i ¼ 1

YiKa;x;hðXiÞPn
j ¼ 1 Ka;x;hðXjÞ

: ð2Þ

First, about some asymptotic properties of estimator bmnða; x;hÞ in
(2), the asymptotic part of its mean integrated squared error MISE

[21] defined by

MISEf bmnðx; a;hÞg ¼
X
xAT

Varf bmnðx; a;hÞgþ
X
xAT

Bias2f bmnðx; a;hÞg:

is given by

AMISEf bmnðx; a;hÞg ¼
h2

4
V2ðaÞ

X
xAT

W2ðxÞþf1�hAðaÞg2
X
xAT

VarðY jX ¼ xÞ
nf ðxÞ :

This last expression is obtained by calculating asymptotic bias and
variance of bmnðx; a;hÞ in (2) using the following expansions of the
modal probability and variance of the discrete symmetric trian-
gular kernel:

PrðK a;x;h ¼ xÞ ¼ 1�2hAðaÞþOðh2Þ and VarðK a;x;hÞ ¼ 2hVðaÞþOðh2Þ;
with AðaÞ ¼ a log ðaþ1Þ�Pa

k ¼ 1 log ðkÞ and VðaÞ ¼ fað2a2þ3aþ1Þ =
6glog ðaþ1Þ�Pa

k ¼ 1 k
2log ðkÞ (refer to [3] for more details). Then,

an asymptotical optimal bandwidth hopt is obtained by minimizing
the asymptotic part AMISE of bmnða; x;hÞ in (2) such that

bhoptða;nÞ ¼
AðaÞPxATVarðY jX ¼ xÞ=f ðxÞ

A2ðaÞPxATVarðY jX ¼ xÞ=f ðxÞþnV2ðaÞPxATW
2ðxÞ

� C0n�1

with

C0 ¼
AðaÞPxATVarðY jX ¼ xÞ=f ðxÞ

V2ðaÞPxATW
2ðxÞ

:

Finally, we get the following inequality:

AMISE bmnðx; a;hoptÞ
� �� n�1 C2

0

n
V2ðaÞ

X
xAT

W2ðxÞ
"

þ 1�C0

n
AðaÞ

� �2X
xAT

VarðY jX ¼ xÞ
f ðxÞ

#
rn�1 C2

0V
2ðaÞ

X
xAT

W2ðxÞ
 

þ 1þ C0AðaÞ
� �2h iX

xAT

VarðY jX ¼ xÞ
f ðxÞ

!

where AMISE f bmnðx; a;hoptÞg tends to 0 as n-1. Thus, for aAN,
the optimal asymptotic root MISE of estimator bmn with kernel
Ka;x;h is Oðn�1=2Þ resulting in

mðxÞ ¼ bmnðx; a;hoptÞþOðn�1=2Þ; xAT:

Note that the discrete kernel estimation and the resulting asymptotic
expansions of estimator's bias and variance depend on two pre-
conditions: discrete random variable and smooth hypothesis. For
xAT, a discrete associated kernel satisfying assumptions (A1)–(A3)
has asymptotically the same behavior that a Dirac type kernel
DxðyÞ; yASx, such that DxðyÞ ¼ 1 at y¼x and 0 for any yax. That
explains also the good asymptotic properties of the corresponding
estimator.

3. Non-parametric kernel estimator for sensitivity analysis

This section aims at building the estimator of ANOVA decom-
position of the model Y ¼ f ðX1;X2;…;XkÞ given by

Y ¼ f 0þ
Xk
i ¼ 1

f iðXiÞþ
X
io j

f ijðXi;XjÞþ⋯þ f 12…kðX1;X2;…;XkÞ; ð3Þ

where each term is defined by

f 0 ¼ EðYÞ; f i ¼ EðY jXiÞ� f 0; f ij ¼ EðY jXi;XjÞ� f i� f j� f 0;… ð4Þ
Non-parametric kernel estimation of such model originates in the
work of [11] for continuous case. The multidimensional version of
non-parametric regression estimator bmn is presented for the cal-
culation of Sobol indices when measuring the contribution of two
or more variables to the variance of Y.
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