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a b s t r a c t

Small concentrations of a high-molecular-weight polymer have been used to create so-called ‘‘elastic tur-
bulence’’ in a micro-scale serpentine channel geometry. It is known that the interaction of large elastic
stresses created by the shearing motion within the fluid flowwith streamline curvature of the serpentine
geometry leads initially to a purely-elastic instability and then the generation of elastic turbulence. We
show that this elastic turbulence enhances the heat transfer at the micro-scale in this geometry by up to
300% under creeping flow conditions in comparison to that achieved by the equivalent Newtonian fluid
flow.

© 2015 The Authors. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and
Applied Mechanics. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).

In so-called ‘‘creeping flow’’, i.e., flows for which the Reynolds
number (Re) remains small (Re < 1), Newtonian fluids remain
laminar and steady. Consequently efficient mixing and heat trans-
fer to the fluid are problematic for very viscous systems or liq-
uid flows at small scales (e.g., microfluidics) as they are essentially
diffusion/conduction dominated. One method to circumnavigate
these problems is to make the fluid non-linear by the addition of
small amounts of high molecular-weight polymer. The resulting
viscoelastic solution enables fluid flows at arbitrarily small values
of Re to exhibit ‘‘turbulent-like’’ characteristics such as randomly
fluctuating fluid motion excited across a broad range of temporal
and spatial scales [1–6]. Steinberg and co-workers [1–4] showed
that highly-elastic viscoelastic fluids can undergo a series of flow
transitions from viscometric laminar flow, to periodic flow, to ap-
parently chaotic flow, and then to fully developed elastic turbu-
lence (ET) in conditions of negligible inertia (Re < 1) and this has
been shown in a range of flows: swirling flow between parallel
disks [1,4,5], in serpentine or wavy channels [2–4,6] and in con-
centric cylinder devices [4,7]. The instabilities and resulting non-
linear interactions are ‘‘purely-elastic’’ in nature — driven by the
elastic (normal) stresses developed in flow—andoccur at Reynolds
numbers far removed from the usual turbulence observed forNew-
tonian fluids which is inertial in nature (critical Re on the order
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of 1000 for internal flows). Although the original work of Grois-
man and Steinberg [1] has elicited a significant degree of interest
(and the passive-scalarmixing effectiveness of the regimehas been
mentioned repeatedly [1,3–7]) outside of the quantitative stud-
ies on passive scalar mixing [8,9], little work has yet been carried
out to assess this effectiveness in other typical ‘‘mixing’’ scenar-
ios. An exception to this is the study of Poole et al. [10] where ET
was used to create oil in polymer solution emulsions in a swirling
flow between parallel disks arrangement (similar to that used in
Ref. [1]) where for a Newtonian oil and continuous phase, at iden-
tical conditions, no emulsification occurred at all. Flows containing
streamline curvature are ideal for encouraging elastic instabilities
and elastic turbulence as it is generally accepted that purely-elastic
instabilities arise as a consequence of both elastic normal stresses
and streamline curvature [11]—although someanalyticalwork [12]
and experimental evidence [13] are beginning to show that even
parallel shear flows may exhibit ET providing the initial perturba-
tion is sufficiently strong.

The growth of ‘‘microfluidic’’ research, and the major funda-
mental interest and applications of such flows [14], has revealed
previously unobserved instabilities and flow phenomena that oc-
cur solely due to viscoelasticity. In fact some of the key publica-
tions on ET [4,6,13] have used such micro-geometries to access
the required parameter space (low inertia, high elastic stresses).
The small scale nature of such flows leads directly to the vis-
coelastic behavior observed: the small length scale simultaneously
makes the Reynolds number (Re ≡ ρUD/µ) small and the Debo-
rah (De ≡ λU/D) or Weissenberg (Wi ≡ λU/D) numbers, which
characterize the degree of elasticity in the flow, large (where ρ

http://dx.doi.org/10.1016/j.taml.2015.03.006
2095-0349/© 2015 The Authors. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://dx.doi.org/10.1016/j.taml.2015.03.006
http://www.elsevier.com/locate/taml
http://www.elsevier.com/locate/taml
http://crossmark.crossref.org/dialog/?doi=10.1016/j.taml.2015.03.006&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:robpoole@liv.ac.uk
http://dx.doi.org/10.1016/j.taml.2015.03.006
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


104 R.D. Whalley et al. / Theoretical and Applied Mechanics Letters 5 (2015) 103–106

Fig. 1. (a) Isometric view of the experimental facility, (b) plan views of the serpentine channel, and (c) detailed view and cross section of the serpentine channel.

is density, U a velocity scale, D a length scale, µ a viscosity, and
λ a characteristic or relaxation time for the fluid). The De num-
ber is a ratio of characteristic timescales (fluid to flow) and the Wi
number is the ratio of elastic to viscous forces. Thus at the micro-
scale, due to the small flow time scales and the high strain rates
attainable, viscoelastic effects will become important even for di-
lute solutions which appear Newtonian in macro-scale flows. In
the current letter we utilize this effect in a microfluidic serpen-
tine channel [3,15–17]. Typical Wi numbers required to observe
elastic turbulence have been reported as: swirling flow between
parallel disks Wi ∼ 3.5 [1], Taylor–Couette flow Wi ∼ 4 [4], ser-
pentine channel flow Wi ∼ 3.2 (onset), > 6.7 (developed) [4],
1.4–3.5 (onset), 10 (developed) [3], 7.5–15 (developed) [6]. By the
use of high shear rates, viscous solvents, and an extremely high-
molecular-weight polymer, we reachWi ∼ 100.

As far as the effect of ET on heat transfer is concerned, no work
has been reported hitherto. For Newtonian fluids at low Reynolds
numbers, e.g., in microfluidics applications, both thermal and vis-
cous development are short (∼pipe diameter) and the Nusselt
number (Nu) is an order one constant which is independent of the
Reynolds number. The heat transfer is conduction-dominated and
long fluid residence times are required to achieve significant tem-
perature increases. In contrast, if (inertial) turbulent conditions can
be reached then heat can be transferredmuchmore efficiently. For
example in a straight pipe at a Reynolds number of 3000 the Nus-
selt number is increased by a factor of 10 above the laminar value
(for identical Prandtl numbers). It might be anticipated that such
large increases in heat transfer coefficients may also occur with
ET provided the base flow is free from convection (and therefore
heat is treated as a passive scalar). The current paper addresses this
question and demonstrates the potential of using ET to enhance
heat transfer in microfluidics applications.

The heat transfer measurements were conducted in a serpen-
tine channel as shown in Fig. 1(a). The serpentine channel was
micro machined into a piece of copper and consisted of 20 half-
loops with inner and outer radii of 1 mm and 2 mm, respectively.
The serpentine channel was flanked on either side by straight in-
let and outlet channel sections and had a total length of 77 mm
(see Fig. 1(b)). The channel had a square cross section with a depth
and width of 1.075 ± 0.01 mm (see Fig. 1(c)). The entire channel
was mounted on a PVC substrate, which encompassed two sepa-
rate reservoirs (one at either end of the channel), and the channel
was enclosed by an upper wall fabricated from PVC.

The entire facility was housed in a Techne TE-10A water
bath continuously-stirred and maintained at a temperature of
30°C (leading to typical fluid temperature increases of 4°C–8°C).
The copper bottom and copper side walls guaranteed isothermal
boundary conditions and the insulating properties of the PVC en-
sured an adiabatic boundary condition on the upper wall. The sur-
face temperature of the serpentine channel was monitored by four

K -type thermocouples each embedded 1 mm from the channel
side walls. The enhancement of heat transfer generated by the
complex fluid flowing through the serpentine channel was quan-
tified by measuring the temperature difference between the two
reservoirs (before and after the serpentine channel) with K -type
thermocouples. The K -type thermocouples had a quoted uncer-
tainty of±1°C andwere calibrated against amercury thermometer
of certified accuracy (±0.1°C).

The pressure drop along the channel was measured by a
Validyne DP15–26 differential pressure transducer. The pressure
transducer estimated the streamwise pressure gradient (1P), from
which the friction factor (f = [1P/(0.5ρU2)](Dh/L), where U is
the average velocity,Dh is the hydraulic diameter, and L is the path-
length equal to 111.25 mm in our set-up) could be determined, by
measuring the difference in pressure across two pressure taps in-
stalled on the upperwall of each reservoir. The pressure transducer
used two different diaphragms to capture the full working range:
one had a working range of 0.2 bar whilst the other had a range of
2 bar, both are said to be accurate to ±0.25% full scale, and both
diaphragms were periodically calibrated against an MKS Baratron
differential pressure transducer (1000 torr fsd).

Fluid was pumped through the serpentine channel by a reg-
ulated pressure vessel. The fluid was discharged into a beaker
and weighed by a Denver TP-1502 precision balance allowing
a measurement of the mass flow rate (uncertainty ±0.03 mg).
The working fluids were solutions of a high-molecular-weight
(∼18×106 g/mol) polyacrylamide supplied by polysciences, with
mass concentrations of 80 ppm and 120 ppm in a Newtonian sol-
vent comprised of 65% sucrose, 1% NaCl, and 34% water (all by
mass). At these concentrations the solutions are either dilute or
semi-dilute as c/c∗

∼ 1, where c is the concentration of polymer
and c∗ is the critical overlap concentration which is approximately
100 ppm (0.01%) when determined from intrinsic viscosity mea-
surements (assuming c∗ is roughly the inverse of the intrinsic vis-
cosity). All rheologicalmeasurements of the fluidswere performed
with a TA Instruments AR1000N controlled-stress rheometer with
a cone-and-plate geometry (60 mm diameter, 2° cone angle).

Those shown in Fig. 2(a) are shear viscosity (η) measurements
versus shear rate (γ̇ ) for the Newtonian and complex fluids used
in the present study. The Newtonian fluid has a constant shear
viscosity of 0.164 Pa·s at 20°C, and the polymer solutions both
exhibit slight shear-thinning behavior. The shear viscosity data of
the complex fluids have been fit to the Carreau–Yasudamodel [18],
which allows an estimate of the shear viscosity (ηCY) values at any
shear rate:

ηCY = η∞ +
η0 − η∞

[1 + (λCYγ̇ )a]n/a
. (1)

In Eq. (1), η0 is the zero-shear-rate viscosity, η∞ is the infinite-
shear-rate viscosity, λCY is a constant which characterizes the
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