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a b s t r a c t

The transition to turbulence in flows where the laminar profile is linearly stable requires perturbations
of finite amplitude. ‘‘Optimal’’ perturbations are distinguished as extrema of certain functionals, and
different functionals give different optima. We here discuss the phase space structure of a 2D simplified
model of the transition to turbulence and discuss optimal perturbations with respect to three criteria:
energy of the initial condition, energy dissipation of the initial condition, and amplitude of noise in a
stochastic transition. We find that the states triggering the transition are different in the three cases, but
show the same scaling with Reynolds number.
© 2015 Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/
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1. Introduction

In parallel shear flows like pipe flow, plane Couette flow or
Poiseuille flow and in boundary layers like the asymptotic suction
boundary layer or the Blasius profile, turbulence appears when the
laminar profile is linearly stable against perturbations [1]. Accord-
ingly, finite amplitude perturbations are required to trigger turbu-
lence, a scenario referred to as by-pass transition [2]. Many studies
in the above flows have shown that the transition to turbulence
is associated with the presence of 3D exact coherent states [3].
They appear in saddle-node bifurcations which in the state space
of the system create regions of initial conditions that do not decay
to the laminar profile, but instead are attracted towards the node-
state [4]. As the Reynolds number increases, the regionwidens, the
node state undergoes further bifurcations and chaotic attractors or
saddles are formed [5–7]. Initial conditions can only trigger turbu-
lencewhen they reach into that interior region, i.e., cross the stable
manifold of the saddle state on the boundary of the region [8]. An
‘‘optimal’’ perturbation is one that can trigger turbulence and at
the same time is a minimum of a prescribed functional. Popular is
an optimization based on amplification or energy gain over a given
interval in time [9–17] or on the total time-averaged dissipation
[18,19]. Because they take the time-evolution into account, they
connect to optimization problems in control theory [20,21].
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We simplify matters here and focus on a geometric optimiza-
tion by identifying initial conditions that will eventually become
turbulent, without regard of the time it takes for them to become
turbulent. The states are optimized so that a certain quadratic func-
tion, such as energy content or dissipation, is extremal: it is a max-
imum in the sense that all initial conditions with a lower value of
the quadratic function will not become turbulent, and it is mini-
mal in that the first initial conditions that become turbulent have
values larger than this optimum. At the optimal value there will
then be at least one trajectory which neither becomes turbulent
nor returns to the laminar profile: it lies on the stable manifold of
the edge state [8], so that the optimum is reached when the iso-
contours of the optimization functional touch the stable manifold
of the edge state (similar descriptions of the state space structure
can be found in Refs. [17,19,22,23]).

2. The Model

To fix ideas and to keep the mathematics as simple as possible,
we take the 2D model introduced by Baggett and Trefethen [24].
The model we use is one of a set of many low-dimensional models
of various levels of complexity [20,22,25–31]. It has a non-normal
linear part and an energy conserving nonlinearity, and, this being
the most important feature for the present application, it is 2D so
that the entire phase space can be visualized (a property it shares
with the illustrative model of Ref. [20]). Despite its simplicity, the
model can be used to illustrate several features of the transition
mechanisms in shear flows.
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Fig. 1. (Color online) State space of the 2D model for the transition to turbulence
for R = 3. The open symbols mark the stable fixed point at the origin (‘‘laminar’’
state) and the two nodes from the bifurcation (‘‘turbulent’’ states). The full symbols
are the edge states, and the red lines indicate the stablemanifolds of the edge states.
The black circle and the gray ellipsoid indicate the states where the energy (7) and
the noise functional (12) areminimal, respectively. The pointswhere they touch the
stable manifolds are indicated by stars.

The model has two variables, which may be thought of as
measuring the amplitudes of streaks x and vortices y (see also
Ref. [32]), and one parameter R that plays the role of the Reynolds
number

ẋ = −x/R + y − y

x2 + y2, (1)

ẏ = −2y/R + x

x2 + y2. (2)

In order to highlight more clearly what happens near the origin,
wemagnify by rescaling the variables with the Reynolds number R
(see Ref. [33]), i.e., we redefine the amplitudes x = x′/R2, y = y′/R2

and the time t = Rt ′ such that (with the primes dropped)

ẋ = −x + Ry − y

x2 + y2/R, (3)

ẏ = −2y + x

x2 + y2/R. (4)

Time evolution under the nonlinear terms alone preserves x2 + y2,
which may be thought of as a kind of energy, so that the nonlinear
terms are ‘‘energy’’ conserving. For R < Rc =

√
8 the only fixed

point is x = y = 0, henceforth referred to as the ‘‘laminar’’ fixed
point. At R = Rc, symmetry related fixed points appear at (xc, yc)
and (−xc, −yc), with

xc = R(2R ± 2

R2 − 8)/D±, (5)

yc = R(R2
− 4 ± R


R2 − 8)/D±, (6)

whereD± =


8 + 2R2 ± 2R

√
R2 − 8. The two fixed points closest

to the origin are unstable, hence are saddle states, and the two
further out are stable and hence nodes. The saddle states are the
‘‘edge states’’ [8] and the node states are in the regions where
turbulencewould form, if more degrees of freedomwere available.
Nevertheless, we will refer to them as the ‘‘turbulent’’ states.

For R → ∞, the saddles are to leading order in 1/R located
at ±(2, 2/R), which in the original coordinates represents an
approach to the origin like ±(2/R2, 2/R3). The stable manifolds

Fig. 2. (Color online) Optimal states in energy for different R. The open symbol
in the middle is the laminar state. States of fixed energy are indicated by circles,
and the points where they touch the stable manifolds (red lines) of the edge states
(indicated as full symbols) are the points marked by stars. One notes that as R
increases, themanifolds becomemore parallel to the x-axis, and the point of contact
approaches the origin from the y-axis.

rotate so as to become parallel to the x-axis, as we will see in the
following.

3. Optimal Initial Conditions of Minimal Energy

The Euclidean distance to the origin can be obtained from a
quadratic form

E = (1/2)(x2 + y2), (7)

which has the form of kinetic energy. This assignment is further
supported by the observation that E is preserved under time
evolution by the nonlinear terms alone. In the sense described in
the introduction, optimality with respect to this energy functional
thus means the largest value up to which all trajectories return to
the laminar state, and the smallest one where the first trajectories
that evolve towards the turbulent state become possible. On the
boundary between these two cases are states that neither return
to laminar nor become turbulent, that lie on the stable manifold
of the edge state. Geometrically, we are thus looking for the circle
with the largest radius that we can draw around the origin that
just touches the stablemanifold. Algorithmically,we find this point
by a modified edge tracking which minimizes the energy (7) as
described in the Appendix.

An example of such an optimal circle is given in Fig. 1, and
its variation with R is shown in Fig. 2. As the Reynolds number
increases, the fixed point moves towards (2, 0) on the abscissa,
and the stable manifold rotates to being parallel to the abscissa.
The point of contact between circles of equal energy and the stable
manifold moves away from the edge state, approaches the y-axis
and moves inwards to the origin like 1/R.

In an insightful discussion of the energy functional, Cossu [23]
notes that in the time-derivative of the energy functional only
the linear parts of the equations of motion remain and that
the nonlinear ones drop out because energy is preserved. This
observation allows to define a necessary condition for the location
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