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a b s t r a c t

The problem of boundary layer flows at a flat plate surface with velocity-slip and temperature-jump
boundary conditions is analyzed. With the velocity slip conditions, there are multiple physical factors
lumped together, and the boundary layer solutions significantly change their behaviors. The self-similarity
in the solutions degenerates, however, the problem is still an ordinary differential equation which can be
solved. Shooting methods are applied to solve the flowfield. The results include velocity and temperature
for both the surface and flowfield. Unlike the traditional Blasius flat plate boundary layer solutions which
are self-similar through all the plate boundary layer, the newsolutions indicate that the front tip is actually
a singularity point, especially at locations within one mean free path from the leading edge.

© 2015 The Author. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and
Applied Mechanics. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).

The problem of incompressible boundary layer at a flat plate
with non-slip and constant heat flux/temperaturewas investigated
successfully. Blasius et al. [1,2] introduced a coordinate transfor-
mation method, and the governing Navier–Stokes partial differen-
tial equations (NSEs) for incompressible flows were transformed
into a single ordinary differential equation, fromwhich a universal
velocity profile can be obtained for the whole flowfield. In addi-
tion, surface properties, such as the friction coefficients, are ob-
tained theoretically. In the literature, there are many numerical
and experimental studies as well. The solutions for boundary layer
along a flat platewere derived and they can findmany applications,
e.g., crude estimations for drags over an airfoil.

As technologies and sciences advance, many new applications
involving boundary layers emerge, and rarefication effectsmust be
considered. For these flows, the traditional NSEs are not directly
applicable. The rarefication effects are described by the Knudsen
(Kn) number [3]

Kn = λ/L, (1)

where λ is themoleculemean free path (MFP), and L the character-
istic length. Larger Kn number flows can be created by large MFP
(e.g., in space engineering), or small characteristic lengths, e.g.,
shock waves, gas flows inside micro-electro-mechanical systems/
nano-electro-mechanical system (MEMS/NEMS). For example,
Tretheway and Meinhart [4] reported in a micro-channel, with a
very thin coating, the velocity slip can be quite apparent. Within
the continuum flow regime (Kn < 0.001) with a small MFP, the
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NSEs applywell with the non-slip velocity boundary conditions. As
the Kn number continues to increase, flows change to the velocity-
slip and temperature-jump (0.001 < Kn < 0.01) regime. With
further larger MFPs, flows can be transitional (0.01 < Kn < 10)
and free molecular (10 < Kn). Within the continuum flow regime,
Blasius’s solutions are well developed; within the free molecular
flow regime, the surface and flowfield solutions were obtained by
Schaaf and Chambre [3] and Cai [5]. Within the transitional flow
regime, we rely on numerical simulation methods. With the ve-
locity slip and temperature jump regime, there has been some
progress [6,7], and the major goal of this paper aims to continue
the discussions on flows within this regime.

The Blasius boundary layer on a flat plate with non-slip
boundary conditions It is well known that for an incompressible
gas flow over a flat plate, the NSEs can be simplified as
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The plate surface conditions are listed as

u(x, 0) = v(x, 0) = 0, u(x,+∞) = U,
T (x, 0) = Tw, T (x,∞) = Te.

(3)

The exact solutions to boundary layer flows over a flat plate were
developed by Blasius, and were explained more conveniently by
White [8]. A stream functionψ(x, η) can be adopted via a variable

http://dx.doi.org/10.1016/j.taml.2015.03.005
2095-0349/© 2015 The Author. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://dx.doi.org/10.1016/j.taml.2015.03.005
http://www.elsevier.com/locate/taml
http://www.elsevier.com/locate/taml
http://crossmark.crossref.org/dialog/?doi=10.1016/j.taml.2015.03.005&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ccai@nmsu.edu
http://dx.doi.org/10.1016/j.taml.2015.03.005
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


C. Cai / Theoretical and Applied Mechanics Letters 5 (2015) 134–139 135

transformation from (x, y) to (x, η)
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where ν is the kinetic viscosity, and U the free stream velocity, f is
a single variable function,

f ′′′(η)+ f (η)f ′′(η) = 0. (5)

And the boundary conditions are transformed into

f (0) = f ′(0) = 0, f ′(∞) = 1. (6)

The above new equation is a concise ordinary differential equation
(ODE), not a partial differential equation (PDE). As a result, there
are exact solutions, and the solving procedure is simple. By using
the shooting method [8], the above two-point boundary value
problem can be solved numerically. Some plate surface properties,
such as friction coefficients, can be obtained analytically.

For the temperature field, with a transformation of variable [8]

Θ(η) =
T − Te
Tw − Te

, (7)

the governing equation and boundary conditions for temperature
are

Θ ′′
+ Prf (η)Θ ′

= 0, (8)
Θ(0) = 1, Θ(∞) = 0, (9)

where Pr is the Prandtl number. The exact solution is

Θ(η) =


∞

η

e−Pr
 η
0 f dsdη/


∞

0
e−Pr

 η
0 f dsdη


. (10)

Slip velocity boundary conditions (0.001 < Kn < 0.01) The
previous section is the foundation for the work in this paper on
velocity-slip and temperature jump boundary conditions. There
is much related work in the literature, and they are reviewed as
follows.

The first category of work concentrated on explanations of
the velocity-slip and temperature-jump boundary conditions.
Maxwell was the first one (1890) who discovered that due to the
existence of the Knudsen layer close to the surface, the bound-
ary condition at the plate surface shall have discontinuity effects,
the velocity and temperature boundary conditions shall be modi-
fied [9,10]. Very soon, Smoluchowski [11,12] published two papers
reporting similar results but with a separate method. Payne [13]
relaxed Smoluchowski’s assumption, and provided more general
results where a Maxwellian type boundary condition is merely a
special scenario. By using the gaskinetic theory, and a multi-scale
expansion method, Wu et al. [14] provided a slightly different, de-
tailed explanation on the inner and outer solutions for flows in
the velocity slip regime. It was emphasized by many researchers
[15–17], that when surface curvatures exist, then extra terms shall
also be included in the velocity-slip boundary condition. Such past
work concentrated on derivations for these velocity-slip boundary
condition, rather than applying these new boundary conditions to
the similarity solutions for boundary layer flows. Higher order slip
boundary conditions [16] were also proposed.

A comprehensive review on experiments and numerical sim-
ulations of rarefied gas flows over a flat plate is available in the
literature [18]. The non-equilibrium effects on the leading edge
of a flat plate is reported [19]. Those work did not follow the ap-
proach for similarity solutions by Blasius. Recently, Matthews and
Hill [20,21] discussed their work on slip flows over a flat plate with

more general slip boundary conditions. In their work, no variable
transformation was introduced, and the work did not include tem-
perature jump boundary conditions. Martin and Boyd [6] reported
their work on similarity solutions for flows over a flat plate with
velocity-slip and temperature-jump conditions. They introduced
an extra parameter K1 which is related to x1/2, in addition to the
two transformed variables (x, η).

The velocity-slip boundary conditions can be expressed as
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v(x, 0) = 0, u(x,∞) = U,
(11)

where us is the wall slip velocity, i.e., the velocity difference be-
tween gas and the wall surface, ug the gas bulk velocity adjacent to
the wall, uw the wall surface velocity, ∂u/∂n the gas velocity gra-
dient normal to the wall, σM a tangential momentum accommoda-
tion coefficient, Tg the gas temperature, λ the MFP for a gas flow
and can be described by the hard spheremodel, λ = m/(

√
2πd2ρ)

for amolecule of a diameter d,m themolecularmass, and ρ the gas
density which is usually of an ordinary value for gas flows inside
MEMS. In general, the term containing temperature gradient in
Eq. (11) is negligible when compared with the velocity gradient
term.

With the same coordinate transformations, Eq. (4), the new
velocity boundary condition changes
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By using a crude gaskinetic estimation [22]
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Eq. (12) can be transformed as
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, f ′(∞) = 1, (14)

where the right hand side of the expression is defined as the slip
coefficient, M0 is the free-stream Mach number, and γ the spe-
cific heat ratio. Since several factors are combined together, it is
evident that different changes of variables may achieve the same
effect; for example, with a larger σM, or at a station x/λ further
downstream from the leading edge. Boundary conditions, Eq. (14),
involve a normalized factor of x/λ. Hence, at different stations, the
boundary conditions vary. Equations (5) and (14) are compatible,
with the transformed coordinate system of (x, η). The governing
equation contains x implicitly through η. Martin & Boyd [6] intro-
duced an extra parameter K1 which involves the Knx and Reynolds
Rex number. The characteristic length for both is the distance from
the leading edge, i.e., x. As can be derived, K1 ∝ KnxRe

1/2
x ∝ x−1/2,

and it is improper to apply the derivative computation, due to the
chain rule between the old coordinates (x, y) to the newcoordinate
system (x, η)
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Kumaran and Pop [23] investigated one related isothermal flow
problem with a moving plate. Different from introducing a new
parameter K1 as Martin’s work, they performed a small parameter
expansion method. Their approach is obviously improper because
the slip coefficient which is defined in Eq. (14) includes a variable
xwhich cannot be considered as a constant.

For gas flows inside MEMS/NEMS, or over a flat plate, the gas
density is actually relatively constant; hence, the MFP does not
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