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a b s t r a c t

The paper addresses the problem of modeling a fracture propagation in linear elastic porous media
driven by injection of non-Newtonian power-law fluid. The model involves the lubrication theory
equation expressing the mass conservation of fluid and a nonlocal singular integral relation for the
fracture aperture as a functional of the fluid pressure. We assume only the viscosity-dominated case in
which the fracture toughness is neglected. This allows considering the fracture as an opened part of a
preexisting closed fracture of larger length. The numerical method consists in solving equations of the
model over the whole length of the preexisting fracture without distinguishing the tip region of the
opened part. The problem is solved via the finite element method. The weak formulation of the solution
allows pressure singularity with the required asymptotics near the fracture tip. Comparison of the
numerical and the exact self-similar solutions in the case of a constant flow rate, zero fluid leakoff, and
zero fracture toughness reveals the accuracy of the approximate solution to at least Oðh1=2Þ, where h is
the maximal linear size of the grid cells. As an illustration, we also demonstrate the numerical
experiments with periodic fluid injection and variable fluid efficiency.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Hydraulic fractures are common objects in the oil and gas
industry and geomechanics. They are created and propagate due to
the pressure of fluid injected either naturally (volcanoes), or
artificially (hydraulic fracturing of oil- and gas-bearing forma-
tions). The main problem of the mathematical modeling of such
fractures is the coupling between the fluid motion inside the
fracture and the elastic interaction of the fluid pressure and rock
stresses that determines the fracture opening. Industrial demands
evoked broad interest in the problem of hydraulic fracture model-
ing, which is now expressed in numerous publications, both
engineering and scientific (see [1,2]).

Among the most often used approaches are the 1D models of
Perkins, Kern, and Nordgren (PKN) [3,4]; Khristianovich, Zheltov,
Geertsma and de Klerk (KGD) [5,6]; and the generalization of the
latter model to the radial geometry (penny-shaped fractures [2]).
Although very well known and analyzed in many papers, these
models still attract scientific interest to the correct and fast
numerical implementation and possible generalizations to

pseudo-3D cases, non-Newtonian fluid, presence of fluid leakoff
through fracture walls, various fracture propagation criteria, etc.
(see [2,7,8] and references therein). Another feature of the KGD
models which is broadly discussed in the literature is the pressure
singularity at the fracture tip and the asymptotic behavior of
pressure and fracture aperture near the tip (see [9]).

In our paper, we focus on the KGD approach for the calculation
of fracture propagation. Two obvious problems of this model are
the pressure singularity at the tip and the coupling of the
differential mass conservation equation with a nonlocal integral
relation between the fluid pressure and the fracture aperture. The
resulting nonlinear integro-differential operator is known to be
noncontracting [10], which makes the most straightforward itera-
tive procedure consisting of calculation of the fluid pressure for
the fixed aperture at the first step, and the subsequent correction
of the aperture for the known pressure at the second step, to be
divergent. The incompressibility of fluid imposes volume balance
conditions on the growing fracture length and width and the flow
of fluid inside the fracture. The numerical algorithm requires
thorough selection of the time step and of the step of the fracture
enlargement to converge iterations to the balanced flow rates (see,
for example, the numerical Loramec code [11]).

The goal of the present paper is to propose a numerical
algorithm that accounts for all the problems mentioned above.
We observe only the zero-toughness case [12], which implies that
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no energy is required to break the formation. This approximation
becomes valid after a short stage of fracture initiation [13].

We assume the fracture to be an opened part of a preexisting
closed fracture of larger length. The mass continuity equation and
the elasticity relation are identically satisfied over the closed part.
This allows us to solve the main integro-differential equation for
pressure directly, over the whole length of the preexisting fracture
without distinguishing the tip of the opened part. The weak
formulation of the solution and the numerical algorithm make it
possible to incorporate singular functions with the required
asymptotic [9], i.e., the pressure singularity and proper aperture
at the fracture tip arises here naturally in the solution of the
problem. This differs our algorithm from the existing hydraulic
fracture simulators [14].

We tested our algorithm on the exact self-similar solution [15]
and showed good agreement and the convergence of the numer-
ical solution. The largest error of the solution is observed near the
fracture tip (two to three grid cells). It becomes significantly
smaller over the remaining opened fracture length.

The algorithm is applicable to non-Newtonian power-law fluid,
nonconstant inflow rate, and nonzero fluid leakoff. As an illustra-
tion, we demonstrate the simulation of fracture opening due to the
periodic fluid injection in the presence of fluid leakoff with the
prescribed fluid efficiency (the ratio of the current fracture volume
to the cumulative injected volume). In the conclusion, the positive
and negative features of the algorithm are discussed.

2. Statement of the problem

We consider a symmetrical vertical fracture of length 2 l
propagating in infinite porous elastic medium under plain strain
condition. The system of coordinates is introduced, as shown in
Fig. 1. The fracture is driven by incompressible non-Newtonian
power-law fluid injected at the center of the fracture along the
Oy-axis.

We made the following simplifying assumptions: the fracture is
planar and rectangular in the vertical section along the Oxy plane;
the fracture aperture does not depend on coordinate y: w¼wðt; xÞ,
where t is time; the closure stress σ acts perpendicular to the
fracture plane.

The rock is supposed to be linear elastic material. Fracture walls
are permeable, although the influence of the pore pressure on the
rock stresses is neglected. The velocity of the fluid flow through
the fracture walls (the leakoff) vl is given as a function of ðt; xÞ or as
some functional of the fluid pressure Pðt; xÞ inside the fracture. As
has been done by many other authors, henceforth we will work
with the net pressure pðt; xÞ ¼ Pðt; xÞ�σ which describes the excess
of the fluid pressure in the fracture over the closure stress σ.

The problem is stated as follows: given the parameters of rock
(Young's modulus, Poisson's ratio, leakoff, confining stress), fluid
(apparent viscosity, behavior index), and the fracturing process

(flow rate), it is required to determine fracture geometry (half-
length L(t) and aperture wðt; xÞ) and net pressure distribution
pðt; xÞ.

3. Governing equations

We assume an incompressible non-Newtonian fluid flow
within the fracture of width w. Integration of the continuity
equation across the section of the fracture in the direction of the
Oz-axis gives the mass conservation law

∂w
∂t

þ∂Q
∂x

¼ �vl: ð1Þ

Here, Q is the flow rate through a vertical cross-section of the
fracture and vl is the leakoff speed. The expression for Q in the case
of power-law non-Newtonian fluid is given by the Poiseuille law
as [1]:

Q ¼ � wð2nþ1Þ=n

M1=n ∂p
∂x

����
����
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∂p
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; M ¼ 2nþ1ð2nþ1Þnμ
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Here, μ and n are consistency and behavior indices of the
fracturing fluid, respectively. Function

Λðw; pxÞ ¼wð2nþ1Þ=nM�1=n ∂p
∂x

����
����
ð1�nÞ=n

will be referred to as the mobility of the fluid. Eq. (1) with the
expression (2) for the flow rate yield the so-called lubrication
theory equation.

4. Fracture aperture

The elastic response of the fracture walls to the net pressure in
the case of two-dimensional linear elasticity theory is given by the
Kolosov–Muskhelishvilli formula [16]

wðt; xÞ ¼ 4
πE0

Z L

0
pðt;ξÞBðx; ξ; LÞ dξ; E0 ¼ E

1�ν2
; ð3Þ

with the singular kernel
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Here, E and ν are Young's modulus and Poisson's ratio of the elastic
media. The inverse of Eq. (3) is given by

pðt; xÞ ¼ E0

4π

Z L

0

∂wðt; ξÞ
∂ξ

2ξ dξ

x2�ξ2
: ð5Þ

Eq. (1) for the 1D fluid flow inside the fracture and formula (3)
for the fracture disclosure form a closed system of integro-
differential equations for two unknowns: p and w. Boundary
conditions for this system depend on the choice of the crack
propagation criterion, which is discussed in the next section.

5. Crack propagation criterion

According to classical linear elastic fracture mechanics (LEFM),
the propagation of a hydraulic fracture is described in terms of the
mode-I stress intensity factor [17] KI. In the observed case of a
symmetrical planar fracture in the linear elastic media, KI can be
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Fig. 1. The geometry of the fracture.
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