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A B S T R A C T

The performance evaluation of forecasting algorithms is an essential requirement for quality assessment and
model comparison. In recent years, algorithms that issue predictive distributions rather than point forecasts have
evolved, as they better represent the stochastic nature of the underlying numerical weather prediction and
power conversion processes. Standard error measures used for the evaluation of point forecasts are not sufficient
for the evaluation of probabilistic forecasts. In comparison to deterministic error measures, many probabilistic
scoring rules lack intuition as they have to satisfy a number of requirements such as reliability and sharpness,
whereas deterministic forecasts only need to be close to the actual observations. This article aims to empower
practitioners and users of probabilistic forecasts to be able to choose appropriate uncertainty representations and
scoring rules depending on the desired application and available data. A holistic view of the most popular forms
of uncertainty representation from single forecasts and ensembles is given, followed by a presentation of the
most popular scoring rules. We want to broaden the understanding for the working principles and relationship of
different scoring rules and their decomposition for probabilistic forecasts of continuous variables by showing
their differences. Therefore, we analyze the behavior of scoring rules, a process frequently referred to as me-
taverification, in detail on real-world multi-model ensemble forecasts in a number of case studies.

1. Introduction

Algorithms for power forecasting on short and mid-term horizons
(e.g., intraday and day-ahead forecasts) are in nearly all cases based on
numerical weather predictions (NWP). Weather forecasting is a sto-
chastic process, meaning that though the current weather condition can
be measured up to a certain degree, a future weather situation cannot be
exactly predicted due to the chaotic behavior of the fluid-dynamics of the
atmosphere. This uncertainty in the weather forecasting process affects
the power forecasting process. Furthermore, the uncertainty is in many
cases amplified, e.g., due to the nonlinearity of the wind turbine power
curve. Therefore, while the quality of deterministic point forecasts is still
improved (e.g., through model combination), the performance converges
towards the intrinsic uncertainty of the underlying NWP generating
processes. To overcome this problem, in recent years there has been a
shift from the paradigm of creating point forecasts to creating distribu-
tional (or probabilistic) forecasts [1]. Probabilistic forecasting quantifies
the amount and direction of the uncertainty of a prediction in a situation-

adaptive way and it can be used to retain optimal decision-making per-
formance under uncertain conditions. This is of particular interest in
power forecasting for applications such as grid stability and power
market operation as basis for better decision making. For instance, the
amount of reserve capacity can be planned depending on the amount of
(un-)certainty of a forecast [2,3]. Probabilistic forecasts can also be used
in economic reward and cost functions [4,5]. While probabilistic fore-
casting for binary events has been widely applied, e.g., for weather event
forecasting (such as the probability of the event of rainfall), there is an
increasing demand for probabilistic forecasting of ordinal and continuous
quantities in the past decade.

While the cause of the indisputable complication of the power grid
operation are the intermittent power generation characteristics of RE
power plants, the effects also influence other areas of RE, such as de-
mand forecasting or electricity price forecasting. Though we mostly
take (wind) power forecasting as an example in this article, the pre-
sented representations and scoring rules are also directly transferable to
other applications within the RE area and beyond.
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1.1. Probabilistic forecasting and evaluation

A variety of possibilities to create probabilistic forecasts of con-
tinuous quantities have emerged in recent years. These forecasting
systems vary in form (e.g., continuously differentiable or stepwise
constant probability distributions, intervals, or risk-indices) and the
way they are computed (parametric or non-parametric uncertainty
distributions, from single forecasts or ensembles). Depending on the
form of uncertainty representation, different methods of performance
assessment have emerged, which are in some cases specialized for a
particular form of uncertainty representation. While these error scores
may be optimal for a particular form of representation, they hinder the
comparability between approaches with different representations.

Error scores for the performance assessment of probabilistic fore-
casts are frequently referred to as scoring rules. In comparison to de-
terministic error measures, many probabilistic scoring rules lack in-
tuition. Where deterministic forecasts need to be close to observations,
probabilistic forecasts have to correctly assess the conditional width of
the probability distribution (commonly referred to as reliability) and
ideally concentrate the probability mass close to the observations (they
have to be sharp) depending on the amount of uncertainty [1] in the
process. Intuition rises by understanding how different types of errors
affect scoring rules. In order to compare the performance of probabil-
istic forecasting techniques, there has to be a clear definition of how the
process of quality assessment is performed. The most general approach
to evaluate probabilistic forecasts is using scoring rules which compare
a predictive distribution to an actual observation.

In the following, we will give a short overview of deterministic and
probabilistic forecast evaluation surveys. Point forecasting and the
error assessment of deterministic forecasts are the basis for the creation
and assessment of probabilistic forecasts. Some articles describe and
summarize the assessment of forecasting errors of deterministic fore-
casts domain-independently, e.g., [6–9]. Other power forecasting sur-
veys also include sections on deterministic forecasting error scores
[10–13], however, they are partially inconsistent with each other and
only mention a selection of error scores. In [14], the evaluation of de-
terministic forecasting is highlighted from a decision-theoretic per-
spective. A summary and a comparison of error scores is presented in
[15]. In addition to deterministic errors, the uncertainty assessment of a
forecast is an increasingly important aspect in power forecasting. Sec-
tions on probabilistic error scores for wind power forecasting are in-
cluded in [16,17,1].

In industrial practice, uncertainty predictions have yet rarely been
utilized. The work of [18] gives meaningful insights into the workings
of probabilistic forecasts, however, there often is a lack of a deeper
understanding of the information content of uncertainty forecasts for
practical decision making. To meet this challenge, this work tries to
define a uniform terminology and issue a call for standardization. It
gives a deeper background to the uncertainty estimation in weather
models and how this can be translated into an uncertainty of wind
power. In addition, possible difficulties in the area of decision making
are pointed out, and which errors can result from this.

1.2. Contributions and structure of this article

The main contributions of this article are a structured overview of

existing forms of estimation and representation of forecasting un-
certainty as well as an investigation of uncertainty assessment techni-
ques for probabilistic forecasts including an investigation of the de-
composition properties.

We give an overview of the most relevant techniques to estimate
uncertainty and highlight the most common forms of uncertainty re-
presentation. Therein, we present a holistic view of the problem of
probabilistic forecasting to enable a better comparability between dif-
ferent forms of uncertainty representations by converting them to
density functions, which happen to be the most general form of un-
certainty representation typically used for continuous probabilistic
forecasts. Having a common form of representation, the assessment of
their performance is easier.

In a number of case studies, the characteristics of the presented
scoring rules are analyzed in detail. This process is defined as meta-
verification in [19], which describes the evaluation of performance
measures and lays out desirable properties of scoring rules such as the
characteristic of being proper [20] and the robustness to hedging [21],
both of which are further detailed in Section 6. From the insights of the
case studies, advantages and limitations in the application of each error
score are discussed.

The remainder of this article is structured as follows: Section 2 in-
troduces general desired properties of uncertainty representation
techniques, possible prediction spaces, and a form of representation
that is suited to represent all common forms of uncertainty re-
presentation for probabilistic forecasts. Sections 3 and 4 give an over-
view on algorithms for creating uncertainty representations from single
predictive models (a single NWP) and ensembles (multiple NWP), re-
spectively. A rating of the strengths and weaknesses of the presented
models is given in Section 5. Section 6 highlights ways to assess the
quality of probabilistic forecasts using scoring rules for probabilistic
forecasts. In Section 7, the properties of the presented uncertainty as-
sessment techniques are investigated in a number of experiments. Our
insights of the experiments are discussed in Section 8, practical ex-
amples of the use of probabilistic forecasts and scoring functions are
given in Section 9. Finally, this article is summarized in Section 10.

2. Uncertainty representation techniques

While the area of deterministic forecasting aims at predicting a
single value for each look-ahead time (point estimate), the area of
probabilistic forecasting tries to additionally assess the uncertainty of a
prediction. There are a number of techniques for computing, re-
presenting, and assessing uncertainty. Though uncertainty does not
necessarily have to be represented as a probability [22], the re-
presentation of uncertainty in the form of a probability does have a
number of advantages, which are described, e.g., in [23,24].

2.1. Representations of predictive distributions

The most universal representation of a continuous predictive dis-
tribution is in the form of a probability density function (pdf) p y( )
which can be evaluated at an arbitrary value y (which typically is a
power value in power forecasting applications) to get the probability
density for this value. The corresponding cumulative density function
(cdf) P y( ) is computed in the form

Nomenclature

x Predictor D-dimensional), e.g., NWP forecast.
̂y Deterministic point forecast of power generation.

y Predictand variable, e.g., power generation.
p y( ) Predictive distribution (pdf) for power generation y.
o Observed “true” power measurment.

P y( ) Predictive distribution (cdf) for power generation y.
oinst Installed nominal capacity of the power plant.
τ Quantile of predictive distribution.
N No. of evaluated items with idx = …n N1, , .

̂y τ( ) Point forecast for quantile τ with ̂ = −y P τ( )τ( ) 1 .
J No. of members in an ensemble with = …j J1, , .
L No. of quantiles in distribution with idx = …l L1, , .
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