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a b s t r a c t

Ultrasonic stress waves, generated during the dynamic impact on structures, were studied. A benchmark
for the finite element analysis (FEA) was made to define the optimum geometrical factors, which were
represented as, mesh distribution, analysis time, ultrasonic wave properties, element type, and shape
to capture the dynamic phenomena compared to the theoretical exact solution. Comparison of three dif-
ferent dimensional finite element models was performed depending on the applied impact forces, the
element size, and the structural geometry. A dynamic equivalence for these three different variables
was established and found to be of a direct multiplication relation to the solid’s density with the
Young’s modulus. The results demonstrated that the stresses in x, and y-directions, predicted by FEA sim-
ulations, matching well for the different materials under normalized time.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Finite Element Analysis (FEA) is a numerical tool used indepen-
dently from experimental work. Lately, FEA has been widely used
in dynamic simulations to determine the stresses and deformations,
the loads and forces movements, and the heat transfer, using varia-
tional matrices arrays and complex mesh diagrams [1]. Moreover,
FEA has proven, in the last decade, to be a very successful tool for
solving many partial differential equations and integral expression,
for which no closed form solution exists. In addition, FEAminimizes
themismatch between experimental and analyticalmeasurements;
it alters the measurements to provide a closer agreement with
experimental readings, using improved models which provide a
close representation of the prototype problem [11]. On the other
hand, FEA has a huge temptation of having a low cost relative to
the experimental, which made it suitable for commercial and labo-
ratory simulations; time dependent integration algorithms for
dynamic implicit and explicit problems in FEAare someof the highly
demanded applications [26]. Commonly, dynamic Loads as time
dependent forces are imposed on structures by either natural earth-
quakes phenomena or as human activities.

As more people started to use finite element analysis and com-
pared their results with experimentally obtained results, a normal-
ized comparison method became essential. FEA mode synthesis
with simple coordinate reduction system was analyzed [28]. The
procedure was capable of analyzing complex shapes, non-linear
spatial mechanisms with irregularly shaped links in high detail.

Du et al. [7] started dynamic FEA simulations using 3-D elastic
beam with an arbitrary moving base. They used six degrees of
freedom in the finite element structural dynamic model with a
pre-twisted offset mass from the elastic center base. The results
provided from the FE model showed comparability to some extent,
as the base motion variables used in multi-body dynamics and the
fundamental elements were approximated to solve the dynamic
problem of rotating beamlike structures. Camacho and Ortiz [4]
developed a FE model with Lagrangian deformations for fracture
in brittle materials, where complicated rate-dependent boundary
conditions as plasticity and thermal coupling were accounted for
in the calculations. The calculated fracture histories in conical,
lateral and radial directions where normalized with deferent coef-
ficients to be compared with the experiment results. Zienkiewicz,
and Taylor [34] explained the success of the FEA to capture the
experimental phenomena dependents on the symmetrical stability
of perturbations, such as, the geometrical complex charactering,
accurateness of material property, the symmetry of applied load
and the optimum application of the boundary conditions. Recently
the strain rate effect was introduced to the FEA through the
dynamic wave properties in solids by Bonet et al. [3]. The accurate-
ness of the time dependent properties and applied boundary
conditions is the key factor of having a successful FEA, as well as
the minimization of the cost, and the reducing of the formation
assembly effort [27].

Thus, comparing the FEA stress results with each other becomes
a significant problem due to the numerous variable factors
involved in the analysis, such as, different geometries [2], applied
dynamic boundary conditions [13], bi normalized terms, or the
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usage of p-method rather than k-method in solids [14]. Recent
efforts in normalizing different FEA outcomes to compare the
stress results in different materials and models had limited suc-
cess, as the dynamic equivalence was not clearly defined for com-
paring stress results [10,8,32,18].

The term dynamic equivalence was first proposed by Wheeler
andMura [30]. They used variational mechanics methods for deter-
mining the different displacementmode shapes anddispersion rela-
tions for a plane time-harmonic waves, propagating through an
infinitely and periodically arranged composite material. The com-
parisonwas successful due to limited variables in their problem for-
mation. Then, Nemat-Nasser and Yamada [24] studied the harmonic
stress wave propagation effect on composite layering direction;
exact solutionswere comparedwith the experimental results show-
ing difference of less than 10%, using normalized dynamic terms.
The dynamically equivalence were used to express the Saint-
Venant’s principle of the strip symmetric stresses [17]. As the decay-
ing loadwas deduced from the average power for the dynamic fields
is required for the self-equilibrium conditions. Chaix et al. [5] stud-
ied the ultrasonic wave propagation in heterogeneous solid media
and compared the theoretical analysis with experimental validation
normalizing results and dynamic equivalence. The theoretical
resultswas different than the experimental for cement basedmedia,
whichwas associated to the poor dynamic equivalent factor used in
the analysis. Zhou and McDowell [33] introduced a dynamic equiv-
alent for the deformation of the atomistic molecular particle sys-
tems. This dynamic equivalence was attenuated using several
factors as, continuum couple stress fields, continuum body force
and bodymoment fields, continuumkinetic fields and atomic defor-
mation constants, and the linear and angular momenta distribu-
tions. Recent analysis for an accurate dynamic equivalence under
ultrasonic stress wave propagation was introduced in literature;
nonetheless, with limited success [10,6,13,21,9].

In this study, a benchmark FEA model was made to define the
optimum geometrical factors such as, mesh distribution, analysis
time, ultrasonic wave properties, element type and shape to cap-
ture the dynamic phenomena compared with the theoretical exact
solutions. The analysis started with defining the dynamic problem
in two different geometries with the same boundary conditions,
resulting in different stress results. Subsequently, three different
3D finite element models have been developed with the same
applied impact forces, element size and numbers, and structural
geometry. During the dynamic analysis was based on p-method
calculations of the numerical integrated equations of motion with
respect to time. Finally, the stresses of the three different devel-
oped 3D models were used to propose a dynamic equivalence,
which could be therefore used for comparing stress results.

2. Theory

Ultrasonic techniques are commonly used to determine the dif-
ferent elastic properties of different types of materials such as,
homogeneous, heterogeneous, isotropic, and anisotropic compos-
ites; as well as, detecting defects and voids within materials
[20,12], as it has a wide range of applications. It is. Additionally,
it is frequently adopted to measure velocity of waves, attenuation,
density, and thickness. Using ultrasonic pulse echo techniques
showed that the dynamic values of Young’s moduli were found
to be correlated with the longitudinal Cl and shear Cs wave speeds
in solids, as presented in Eq. (1):
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where E, q and m refer to young’s modulus, apparent density, and
Poisson’s ratio; respectively. Correlation between elastic young’s

modulus, bulk and shear moduli were introduced by Weng’s model
using variational mechanics methods [25]. It takes into account the
deformations, strain and stress state of the counterparts, interfacial
stresses, and the elastic energy; in determining overall moduli of
the composite. The elastic energy balance of the alloy mixture
was employed, in terms of average strains and stresses divided into
twomain parts as hydrostatic and deviatoric. The stiffness and com-
pliance of the mixture alloy tensors were used as Lijkl = (3K, 2G),
Mijkl = (1/3K, 1/2G); respectively, in terms of shear, K, bulk, G, mod-
uli, and c is Passion’s ratio. The bulk B and shear moduli m for the
alloy two phase mixture are found as shown in Eq. (2),
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where Vf is the filers volume fraction, the subscripts ‘c’, ‘M’, and ‘f’
denotes the alloy two phase mixture, the main matrix material
and the filler properties; respectively. The aM and bM are main
matrix constant properties, which depend directly on the matrix
bulk and shear moduli. The Young’s modulus is then calculated
using the bulk and shear moduli as in Eq. (3),

Bc ¼ E
3ð1� 2mÞ ; lc ¼

E
2ð1þ mÞ ð3Þ

Crack Initiation Toughness Average Stress Approach was ana-
lyzed by Williams in homogeneous; as well as, nonhomogeneous
materials [31]. Williams used a classical Airy’s stress function for-
mulation in polar coordinates; whereas Irwin used for his analysis
the complex variable method; following Westergaard, considering
an infinite isotropic and homogeneous plate with infinite crack
under uniform normal stresses r and shear stresses s. The crack
tip was assumed as the origin for both Cartesian (x, y) and polar
(r, h) coordinates [31,15,16]. Williams has assumed a variable sep-
arable stress function w in the polar coordinates as w = rk+1f(h). The
values of the eigen parameter k for the free edged cracked plate is
as sin2pk = 0. The stress function should satisfy the dimensional
governing equation of r2ðr2wÞ ¼ 0 with no body forces. Where,
r2 is the harmonic (Laplacian) operator, r2 ¼ @

@r2 þ 1
r

@
@r þ 1

r2
@

@h2
Also,

the stress components can be defined using the stress function as
presented in Eq. (4),
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By replacing the Laplacian operator into the stress function the
biharmonic equation becomes as in Eq. (5),

r2ðr2wÞ ¼ ðk� 1Þðk� 2Þrk�3ðf 00ðhÞ þ ðkþ 1Þ2f ðhÞÞ

þ 1
r
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The above equation is a fourth order ordinary differential equa-

tion as a function of h. The general solution of which is presented in
Eq. (6),

f ðhÞ ¼ C1 cosðk� 1Þhþ C2 sinðk� 1Þhþ C3 cosðkþ 1Þh
þ C4 sinðkþ 1Þh ð6Þ

where C1 � C4 are the unknown coefficients to be calculated from
the body boundary conditions as the crack two faces are along
h = ±p. For stress free crack faces the stress rhh = rrh = 0, at h = ±p,
which leads to f(h) = f(h) = 0 along h = ±p. By applying the boundary
conditions and separating the symmetric and the anti-symmetric
parts, and obtaining a non-trivial solution in each case as k = n/2
resulting in Eq. (7) as,
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