
Astroparticle Physics 102 (2018) 89–94 

Contents lists available at ScienceDirect 

Astroparticle Physics 

journal homepage: www.elsevier.com/locate/astropartphys 

Computing mean logarithmic mass from muon counts in air shower 

experiments 

H.P. Dembinski 

Bartol Institute, University of Delaware & Max-Planck-Institute for Nuclear Physics, USA 

a r t i c l e i n f o 

Article history: 

Received 24 November 2017 

Revised 11 April 2018 

Accepted 22 May 2018 

Available online 23 May 2018 

Keywords: 

Air showers 

Muons 

Cosmic rays 

Statistics 

Hadronic interactions 

Fluctuations 

a b s t r a c t 

I discuss the conversion of muon counts in air showers, which are observable by experiments, into mean 

logarithmic mass, an important variable to express the mass composition of cosmic rays. Stochastic fluc- 

tuations in the shower development and statistical fluctuations from muon sampling can subtly bias the 

conversion. A central theme is that the mean of the logarithm of the muon number is not identical to 

the logarithm of the mean. It is discussed how that affects the conversion in practice. Simple analytical 

formulas to quantify and correct such biases are presented, which are applicable to any kind of experi- 

ment. 

© 2018 Published by Elsevier B.V. 

1. Introduction 

The mean logarithmic mass 〈 ln A 〉 is a common variable to 

summarize the mass composition of cosmic rays. Most ground- 

based experiments infer the mass by counting muons in cosmic- 

ray induced air showers [1] . This paper discusses the conversion of 

muon number to mean logarithmic mass from the point of view of 

the data analyst, with a focus on the effect of stochastic fluctua- 

tions in the shower development [2,3] and the detector response 

on the conversion. The fluctuations can bias estimates of 〈 ln A 〉 
in several ways. Biases here are defined in the usual statistical 

sense; if ˆ x is an estimate of the true value x that fluctuates accord- 

ing to a probability density f ( ̂  x ) , then the bias is the expectation 

E [ ̂ x − x ] = 

∫ 
( ̂  x − x ) f ( ̂  x ) d ̂ x . We generally want ˆ x to have zero bias, 

so that the sample average 〈 ̂  x 〉 converges to x for large samples. 

The results in this paper are not specific to a particular type 

of experiment. It is assumed throughout this paper that an exper- 

iment provides an unbiased estimate ˆ N μ of the total number of 

muons N μ produced in an air shower and an estimate ˆ E of the 

shower energy E . This is far from trivial and much of the diffi- 

culty in running an experiment deals with this. The total number 

of muons N μ produced in an air shower cannot be directly mea- 

sured, because experiments can only count muons that reach the 

ground, while some decay on the way. The experimental distinc- 

tion between muons and other charged particles at the ground 

is not easy either [4–7] . But in principle, ˆ N μ can be inferred for 
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a given geometry and shower energy from the measurement by 

applying an average correction obtained from air shower simula- 

tions. Highly-inclined air showers recorded by Haverah Park and 

the Pierre Auger Observatory have been analyzed in this way [8–

11] . Similarly, an estimate ˆ E of the shower energy can be inferred 

from the number of electrons and photons that reach the ground, 

or by recording the longitudinal shower profile with telescopes. 

The paper deals with the comparably easier part of the conver- 

sion of the unbiased estimates ˆ E , ˆ N μ to 〈 ln A 〉 . Fluctuations occur 

in the shower development and arise from the sampling of an air 

shower by a detector. It is important to distinguish between these 

two kinds of fluctuations, because they are approximately indepen- 

dent [12] . Both randomly shift the estimates ˆ E , ˆ N μ away from their 

true values E , N μ, and these random shifts cause some subtle bi- 

ases in the conversion to 〈 ln A 〉 . We quantify these biases. Knowing 

their sizes allows one to safely neglect them if they are small, and 

to correct them otherwise. 

2. From muon number to mass 

It is instructive to introduce fluctuations step-by-step. We start 

by ignoring fluctuations from detector sampling, only stochastic 

fluctuations in the shower development are considered. The true 

muon number N μ and the shower energy E shall be exactly known 

and the energy E shall be same for all showers. Stochastic fluctua- 

tions in the hadronic interactions are still causing the muon num- 

ber N μ to vary randomly. 
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Fig. 1. Average logarithm of the number of muons 〈 ln N μ〉 (circles) and logarithm 

of the average number of muons ln 〈 N μ〉 (squares) in simulated vertical air showers 

produced by primary particles with A nucleons. A fitted straight line (dashed) is 

shown for comparison. Solid markers stand for averages computed over showers 

from a single primary, open markers stand for an equal mix of proton and iron 

showers. Error bars indicate the statistical uncertainty of the finite sample (2200 

showers per primary and energy). 

The first point to make is that 〈 ln A 〉 is best computed from the 

mean logarithmic muon number 〈 ln N μ〉 , and not the mean of the 

muon number 〈 N μ〉 . In either case, the average here is computed 

over many air showers with the same shower energy E . 

The following argument is similar to the one developed by the 

Pierre Auger collaboration for the depth of shower maximum [13] . 

The relationship between N μ and A can be understood within the 

Matthews–Heitler model of a hadronic shower [14] . The analytical 

model treats air showers in a simplified way, but describes sur- 

prisingly many features of air showers correctly. According to the 

model, the total muon number N μ for a cosmic ray with A nucle- 

ons scales with a power of the number of nucleons 

N μ = A 

1 −β N 

p 
μ, (1) 

where N 

p 
μ is the number of muons in a proton-induced air shower, 

and β � 0.9 is a constant. 

This behavior is well reproduced in full air shower simula- 

tions. In the Matthews-Heitler model, stochastic fluctuations in the 

shower development are neglected. To show that Eq. (1) holds for 

the real showers, several sets of vertical showers with identical pri- 

mary particles were simulated with CORSIKA [15] compiled with 

the CONEX option, using the hadronic interaction models SIBYLL- 

2.3 [16] and GHEISHA [17] . The showers were simulated in a US 

standard atmosphere until a slant depth of 1050 g cm 

−2 . The num- 

ber of muons N μ in each shower were taken from the maximum 

of the longitudinal muon profile. Proton, helium, nitrogen, silicon, 

and iron primaries were simulated. For each primary, the aver- 

ages ln 〈 N μ〉 and 〈 ln N μ〉 were computed. The two are subtly differ- 

ent, because the expectation is noncommutative with a non-linear 

mapping f ( x ), E [ f (x )] � = f ( E [ x ]) . The dependence on A is shown in 

Fig. 1 for a wide range of primary energies. If A is a constant, both 

ln 〈 N μ〉 and 〈 ln N μ〉 scale with ln A as predicted by Eq. (1) . This re- 

sult is independent of the hadronic interaction models and shower 

inclination. 

To use Eq. (1) to get an estimate of 〈 ln A 〉 for real air showers, 

we consider the realistic case where the mass A is another stochas- 

tic variable that changes from shower to shower. For a single pri- 

mary, the simulations show that 〈 N μ〉 = A 

1 −β 〈 N 

p 
μ〉 . If f A is the frac- 

tion with which a primary with A nucleons occurs, a superposition 

of primaries yields ∑ 

A 

f A 〈 N μ〉 = 

∑ 

A 

f A A 

1 −β 〈 N 

p 
μ〉 = 〈 N 

p 
μ〉 ∑ 

A 

f A A 

1 −β

⇔ 〈 N μ〉 = 〈 N 

p 
μ〉 〈 A 

1 −β〉 . (2) 

Unfortunately, we cannot convert 〈 A 

1 −β〉 to 〈 A 〉 or 〈 ln A 〉 , because 

these are non-linear functions of A . The solution is to start from 

〈 ln N μ〉 = (1 − β) ln A + 〈 ln N 

p 
μ〉 for a single primary, which is also 

supported by the simulations. Then the result of the superposition 

is 

〈 ln N μ〉 = (1 − β) 〈 ln A 〉 + 〈 ln N 

p 
μ〉 , (3) 

where we used that 〈 ax + by 〉 = a 〈 x 〉 + b〈 y 〉 for constants a , b and 

stochastic variables x , y . 

Both β and 〈 ln N 

p 
μ〉 can be obtained from air shower simula- 

tions. If 〈 ln N 

Fe 
μ 〉 is available, it can be used to substitute β . The 

two related formulas for 〈 ln A 〉 are 

〈 ln A 〉 = 

〈 ln N μ〉 − 〈 ln N 

p 
μ〉 

1 − β
(4) 

〈 ln A 〉 = 

〈 ln N μ〉 − 〈 ln N 

p 
μ〉 

〈 ln N 

Fe 
μ 〉 − 〈 ln N 

p 
μ〉 ln 56 . (5) 

This approach is very elegant, because the equations are true 

whatever the probability distributions are for A , N μ, N 

p 
μ, and N 

Fe 
μ . 

As previously stated, the mean of the logarithm is not the 

same as the logarithm of the mean, ln 〈 N μ〉 is always higher than 

〈 ln N μ〉 . Still, the two are quite close and the bias of substituting 

one for the other may be negligible in some situations. To judge 

when this is safe, a simple formula to compute the bias is given in 

Section 3 . Some analyses [18] do not produce an estimate of the 

muon number event-by-event, only the average 〈 N μ〉 over many 

showers. In these cases, the formula can be used to correct the 

difference (〈 ln N μ〉 − ln 〈 N μ〉 ) . 
So far fluctuations introduced by detector sampling were ne- 

glected, but N μ is not known in practice, only an estimate ˆ N μ

which fluctuates around N μ. Some muons decay on the way to the 

ground, the detector does not count all muons that arrive, and so 

on. It is assumed that these losses are corrected on average, but 

they introduces additional fluctuations. Since the mean of the log- 

arithm is not the logarithm of the mean, we find 〈 ln 

ˆ N μ〉 � = 〈 ln N μ〉 
even if ˆ N μ is an unbiased estimate of N μ. How to correct for this 

effect is discussed in Section 4 . 

Finally, one has to consider that the average 〈 ln 

ˆ N μ〉 is not com- 

puted over showers with the same energy E in practice, but for 

showers that fall into the same energy bin. The energy E is also 

not known exactly, only an estimate ˆ E of it. The quantitative im- 

pact of that is calculated in Section 5 . 
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