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A B S T R A C T

In the framework of the circular restricted three body problem we show that the numerically computed strength
SR(e, i, ω) is a good indicator of the strength and width of the mean-motion resonances in the full space (e, i, ω).
We present a survey of strengths in the space (e, i) for typical interior and exterior resonances. The resonance
strength is highly dependent on (e, i, ω) except for exterior resonances of the type 1:k for which the dependence
with (i, ω) is softer. Such resonances are thus strong even for retrograde orbits. All other resonances are weaker
at very-high eccentricities for ω∼ 90° or 270° and 60°≲ i≲ 120°. We explore the resonance structure in the space
(a, i) by means of dynamical maps and we find structures similar to those of space (a, e).

1. Introduction

Orbital resonances are an essential mechanism in the dynamics of
minor bodies, planetary rings, satellite systems and planetary systems
and they represent a fundamental core of knowledge of celestial me-
chanics. In this paper we will focus on the case of a small body in mean
motion resonance (hereafter MMR) with a planet, with the aim of ex-
tending our understanding of its dynamics towards regions of the space
of orbital elements that have not yet been fully explored. We recall that
a particle with mean motion n is in the MMR kp:k with a planet with
mean motion np when the approximate relation − ∼k n kn 0p p is sa-
tisfied, being kp and k positive integers. The resonance is not limited to
an exact value of semimajor axis a, on the contrary the resonance has
some width in astronomical units (au) centered on the nominal position,
a0, deduced from =n n k k/p p . The picture astronomers have outlined
along the years about resonant behavior is based, with few exceptions,
on theories developed for low inclination orbits. These theories showed
that the resonance domain in semimajor axis grows with the orbital
eccentricity e: it goes from zero for =e 0 to wide regions for high e. In
the case of the resonances with the giant planets of the Solar System,
the resonant islands at high e are so wide that a large chaotic region is
formed, due to the superposition of the different resonances. There is a
very complete literature about MMRs, we can mention for example
some chapters of books (Murray and Dermott, 1999; Morbidelli, 2002;
Ferraz-Mello, 2007; Lemaître, 2010) and some reviews (Peale, 1976;
Malhotra, 1998; Nesvorný et al., 2002; Gallardo, 2018).

From basic theories, we know that the orbital dynamics of a small
body in resonance with a planet is defined by the disturbing function R

(a, σ), where σ is the critical angle that we will define later. The equa-
tions of motion can be derived from its Hamiltonian � , that can be
found in the Appendix. The disturbing function R actually depends also
on the other orbital parameters of the small body, but their typical
evolution timescale is generally much larger than a and σ. All along this
paper, we will focus only on the resonant (or semi-secular) timescale,
over which (e, i, ω, Ω) can be considered fixed. The resonant motion
imposes oscillations (called librations) of σ around an equilibrium value
σ0, correlated to oscillations of the semimajor axis a, though its value
remains between limits defined by the borders (or separatrices) of the
resonance (Nesvorný et al., 2002). The interval between these limits is
called width of the resonance. Simplified analytical theories based on a
unique resonant perturbing term of the form =R A σcos( ) usually call
strength the coefficient A. The simplified Hamiltonian adopts a pen-
dulum-like form and then the strength A is thus equal to the depth of
the resonance island, whereas its width is proportional to A . The
overall geometry of the resonance is given by the level curves of � in
the plane (a, σ). Of course, the remaining orbital elements (e, i, ω, Ω)
are actually not exactly fixed. For example, we show in Fig. 1 the time
evolution of a, e, i and σ of a test particle evolving inside the 3:1 re-
sonance with Jupiter. The pendulum-like oscillations of a and σ are
obvious. Their repercussions on e and i are insignificant compared to
their long-term drift (not shown and not studied in this paper): we note
in particular that the oscillations of e and i are exactly in phase with a,
reflecting the fact that they are only a by-product of the coordinates
used and not independent features of the dynamics.

The theories developed for low inclination orbits showed that in the
low-eccentricity regime the strength of the resonance kp:k is
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proportional to eq being e the eccentricity of the particle and = −q k kp .
So, q was conveniently called the order of the resonance. This justifies
that only low order resonances have deserved the attention of astron-
omers. A complication to this simple rule was discovered by Morais and
Giuppone (2012) and Morais and Namouni (2013). They demonstrated
that for the extreme case of coplanar retrograde orbits (that means

= ∘i 180 ) the strength of these resonances is not proportional to the
eccentricity elevated to the power q but elevated to the power +k kp .
Being these integers both positive the order for retrograde orbits results
to be always larger. Then, the difference between the integers factor-
izing both n is no longer representative of the order of the resonance for
the full interval of orbital inclinations. Recently an analytical expansion
for near polar orbits was obtained (Namouni and Morais, 2017) and it
was found again a very different behavior: the expansion order of the
disturbing function is not given by the value of q but by its parity: odd
(1) or even (2). That expansion was recently extended to arbitrary in-
clinations by Namouni and Morais (2018). Their paper lists the terms
up to fourth order terms in e and −i isin( )r where ir is an arbitrary
reference inclination.

In the general case, the leading-order terms of the disturbing func-
tion (including the so-called “pure eccentricity terms” of the classic
expansions) are never proportional to e alone, but to coefficients of the
type eNsin iM, being N and M integers (Roig et al., 1998; Ellis and
Murray, 2000; Namouni and Morais, 2018). This generates complicated
expressions. Any analytical representation of the disturbing function is
accurate only in a restricted domain of the orbital parameters, and the
number of terms with non-negligible strength increases dramatically as
we get further from the reference value around which the disturbing
function is expanded. Then R(σ) cannot be more represented by an
unique term but the concept of strength can be generalized to the
amplitude of the exact R(σ) which in this case must be calculated nu-
merically (Gallardo, 2006). Nevertheless, the concept of strength can
still apply to a specific coefficient corresponding to some relevant cri-
tical angle as is done for example in Namouni and Morais (2018).

In numerical simulations of comets, centaurs and fictitious particles
some works showed that captures in retrograde resonances are a
common orbital state triggering the interest of the study of high in-
clination and retrograde resonances (Namouni and Morais, 2015;

Fernández et al., 2016; Fernandez et al., 2018). In this context this
paper generalizes the concept of strength to the full range of orbital
elements and facilitates its calculation by a numerical procedure. We
organize this paper as follows: in Section 2 we introduce the funda-
mental properties of the resonant motion, the numerical technique for
computing the resonance strength, SR, for arbitrary resonances and we
check SR with the existing theories and with purely numerical methods,
mainly dynamical maps. In Section 3 we present a survey of the
strengths in the space (e, i, ω) for some typical resonances still com-
paring the results to dynamical maps and we show some particular
cases. In Section 4 we present the structure of MMRs in the space (a, i).
We summarize the conclusions in Section 5.

2. Resonance strength

2.1. Notation

Different conventions have been utilized in the literature to describe
the very simple relationship between the mean motions of two resonant
objects. In this paper, we will call resonance kp:k the resonance gen-
erated by the commensurability given by − ∼k n kn 0p p . For example,
3:1 is a resonance interior to the perturbing planet and 1:3 is an exterior
resonance. Following for example Ellis and Murray (2000), the resonant
disturbing function, R(σ), can be written as a series expansion of cosines
which arguments are of the type

= − +σ k λ kλ γp p (1)

where λp and λ are the quick varying mean longitudes of the planet and
particle respectively and γ is a slow evolving angle defined by a linear
combination of the longitudes of the ascending nodes and longitudes of
the perihelia of the particle and the planet involved. In the simplified
case of a perturbing planet with zero inclination and circular orbit γ
only depends on the asteroid’s longitude of perihelion ϖ and longitude
of the ascending node Ω (Gallardo, 2006; Morais and Namouni, 2013).
Different linear combinations of ϖ and Ω generate different γ and
consequently different σ, but all of them include the angle −k λ kλ,p p
characteristic of the resonance kp:k. All possible σ can be called critical
angle but in general there is one particular σ that correlates better with

Fig. 1. Time evolution of a test particle inside the resonance 3:1 with Jupiter. The full set of orbital elements (a, e, i) oscillates (or librates) due to the resonance. The
critical angle is = − −σ λ λ ϖ3 2J . A drift much slower than the resonant oscillations is also clearly visible, as a result of the secular dynamics inside the resonance.
These long-term variations can have a much larger amplitude for e and i than the small resonant oscillations, possibly leading the particle towards chaotic regions.

T. Gallardo Icarus 317 (2019) 121–134

122



Download English Version:

https://daneshyari.com/en/article/8133656

Download Persian Version:

https://daneshyari.com/article/8133656

Daneshyari.com

https://daneshyari.com/en/article/8133656
https://daneshyari.com/article/8133656
https://daneshyari.com

