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a b s t r a c t 

We have identified all asteroids in three-body mean-motion resonances in all possible planets configu- 

rations. The identification was done dynamically: the orbits of the asteroids were integrated for 10 0,0 0 0 

yrs and the set of the resonant arguments was numerically analyzed. We have found that each possible 

planets configuration has a lot of the resonant asteroids. In total 65,972 resonant asteroids ( ≈14.1% of the 

total number of 467,303 objects from AstDyS database) have been identified. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

The mean motion resonances (MMRs) are playing an essential 

role in the dynamics of the asteroids. Besides the usual two-body 

MMR that involve a massive body (usually, a planet) and an aster- 

oid, there are also so-called three-body resonances involving two 

planets and an asteroid. Originally the study of the asteroid three- 

body MMR was started with the papers about the analytical and 

numerical approaches to MMR ( Nesvorny and Morbidelli, 1998; 

Murray et al., 1998 ). In the recent years three-body MMR are get- 

ting more attention from the researchers worldwide ( Smirnov and 

Shevchenko, 2013; Gallardo, 2014; Milani et al., 2014; Quillen and 

French, 2014; Todorovi ́c and Novakovi ́c, 2015; Gallardo et al., 2016; 

Go ́zdziewski et al., 2016 ). 

Thus, for example, Quillen and French (2014) investigated the 

resonant chains and three-body resonances in the inner Uranian 

satellite system. They used numerical integration of the satel- 

lites to identify the resonances. Gallardo et al. developed the 

semi-analytical method to estimate the strength of the three- 

body resonances and produced the atlas of the strongest reso- 

nances in the Solar system ( Gallardo, 2014; Gallardo et al., 2016 ). 

Sekhar et al. (2016) studied the influence of three-body resonances 

on the meteoroid streams. 

This paper extends the previous work ( Smirnov and 

Shevchenko, 2013 ) in which all three-body MMR with Jupiter 

and Saturn have been identified (on the set of 249,567 numbered 

asteroids from AstDyS catalog). The goal of a current study was 
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to find all possible three-body MMR with each combination of 

the planets (Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, 

Neptune) in the Solar system and provide full statistical results of 

the three-body MMRs in the Solar System. 

2. Methodology 

The three-body MMR is a linear combination of the mean fre- 

quencies of the orbital motion of two planets and an asteroid: 

m P1 
˙ λP1 + m P2 

˙ λP2 + m ̇

 λ ≈ 0 , (1) 

where ˙ λP1 , 
˙ λP2 , 

˙ λ are the derivatives of mean longitudes of the 

first and the second planet and of an asteroid respectively and m P1 , 

m P2 , m — are integers. 

To identify the resonance, a special parameter called “resonant 

argument” is introduced. It is a linear combination of the mean 

longitudes and the longitudes of periapsis. In the planar problem 

it is defined by the following formula: 

σ = m P1 λP1 + m P2 λP2 + mλ + p P1 � P1 + p P2 � P2 + p� , (2) 

where λP1 , λP2 , λ, ϖP1 , ϖP2 , ϖ are the mean longitudes and longi- 

tudes of periapsis of two planets and an asteroid respectively and 

m P1 , m P2 , m, p P1 , p P2 , p are integers obeying by d’Alembert rule 

( Morbidelli, 2002 ): 

m P1 + m P2 + m + p P1 + p P2 + p = 0 . (3) 

We assume the planar problem, so the longitudes of ascending 

nodes are not taken into account. 

If the resonant argument librates (similar to the librations of a 

pendulum) the asteroid is in the resonance; if it circulates — then 
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the asteroid is out of the resonance ( Chirikov, 1979; Shevchenko, 

2007; Smirnov and Shevchenko, 2013 ). 

One of the most important properties of the resonance is its 

order q , that is equal to the absolute value of the sum of integers 

(see Morbidelli, 2002 ): 

q = | m P1 + m P2 + m | . (4) 

In the previous study, a massive identification of asteroids in 

the three-body resonances with Jupiter and Saturn was made 

( Smirnov and Shevchenko, 2013 ). The procedure had two steps: 

a formal identification that was based on the value of the semi- 

major axis that should be near the resonant value, and dynami- 

cal identification where the orbits of 249,567 asteroids were inte- 

grated for the period of 10 5 yrs. The total fraction of the identified 

resonant asteroids with order q ≤ 6 was equal to 4.4%. 

However, besides the three-body resonances with Jupiter and 

Saturn there are also a number of other configurations. We con- 

sidered all the resonances involving the 8 planets taken by pairs 

starting with the pair “Mercury-Venus” up to “Mercury-Neptune”

and then “Venus-Earth” up to “Venus-Neptune” and so on. In our 

study only main subresonances ( p P1 = p P2 = 0 ) were considered. 

Following the algorithm introduced in Smirnov and 

Shevchenko (2013) we limit m P1 , m P2 , m with the following 

requirements: 

q ≤ q max (5) 

| m P1 | , | m P2 | , | m | ≤ M max , (6) 

where q max = 6 and M max = 7 . 

Also we set two additional requirements: 

m P1 > 0 , gcd (m P1 , m P2 , m ) = 1 , (7) 

where gcd is the greatest common divisor. 

The initial data are taken from AstDyS catalog maintained by 

Milani, Kneževi ́c and their coworkers ( AstDyS, 2016 ). In this study 

we consider much more asteroids (467,303 instead of 249,567) 

than in the previous work ( Smirnov and Shevchenko, 2013 ) be- 

cause new objects have been added to the catalog. Therefore the 

new data for the configuration “Jupiter–Saturn” are also intro- 

duced. 

2.1. Formal identification 

At first stage we build so-called “identification matrix” that 

consists of two columns: first column gives the designation of the 

resonance ( m P1 m P2 m ) where P 1 , P 2 are the first letters of the plan- 

ets respectively (V — Venus, E — Earth, M — Mars, J — Jupiter, S —

Saturn, U — Uranus, N — Neptune, except Mercury which matches 

with R) and all values are taken with their signs. The second col- 

umn gives the resonant value of the semi-major axis calculated by 

the algorithm specified in Smirnov and Shevchenko (2013) , with 

the same limitations; however, we replaced the expression for ap- 

proximate estimation of the precession rate by the new formulae 

described in Shevchenko (2017) in order to consider both cases 

when the asteroid either has the inner orbit with respect to the 

planet or the outer orbit: 

˙ ω̄ = 

3 π

2 

M p 

(1 + M p ) 3 / 2 
a 2 p 

a 7 / 2 

(
1 + 

3 

2 

e 2 p 

)
, a > a p (8) 

and 

˙ ω̄ = 

3 π

2 

M p a 
3 / 2 

a 3 p 

(
1 − e 2 p 

)−3 / 2 
, a < a p . (9) 

Here M p , a p , e p are the planet mass (in Solar masses), semi-major 

axis (in au) and eccentricity and a is the semi-major axis of the 

Table 1 

An extract from the identification matrix. 

Resonance a res (au) 

5J − 2S − 2 3.1753 

4J − 6U − 1 2.4192 

4E − 7M − 1 2.3457 

6S − 3N − 1 3.0764 

1M − 3J − 1 2.3425 

object. In these equations we use the planet with the largest con- 

tribution to the precession rate (it is usually Jupiter, however, it 

can be also, e.g., Neptune in case of TNO). 

Unlike before now we have to show directly the planets in- 

volved in the resonance because the designation without planets’ 

identifiers is not unique anymore (e.g. 2 −3 + 1 could be resonance 

with Jupiter and Saturn or Venus and Earth). The new format is 

proposed: 2V −3E + 1 means the three-body resonance with Venus 

and Earth where integers are equal to 2, −3 and 1 for Venus, Earth 

and asteroid respectively, 5J −2S −2 — three-body resonance with 

Jupiter and Saturn where the integers are equal to 5, −2 , −2 for 

Jupiter, Saturn and asteroid respectively. The planets in the desig- 

nation are ordered by the distance from the Sun. 

An example of the identification matrix (a few rows) is pre- 

sented in Table 1 . The full identification matrices are available at 

the following link: https://goo.gl/T38gFx . 

2.2. Dynamical identification 

The algorithm of the dynamical identification is based on a pro- 

cedure described in Smirnov and Shevchenko (2013) , however, we 

introduce some changes: 

1. each asteroid from the set of 467,303 objects is integrated for 

the period of 10 5 yrs; 

2. mercury6 integrator is used ( Chambers, 1999 ); 

3. all perturbations from the planets and Pluto are taken into ac- 

count; 

4. the output interval is set to 10 yrs. 

For each asteroid, we calculate a set of possible resonances 

based on the closeness of the asteroid’s semi-major axis to the res- 

onant value of the semi-major axis for the given resonance (that 

we have computed in the previous step). The resonant argument 

is analyzed automatically to identify the libration/circulation. The 

identification procedure for a chosen asteroid is described below. 

1. We create the time series of the semi-major axis and the reso- 

nant argument, the time space between the points is 10 years, 

the series contain in common 10,001 data points from 0 to 

10 0,0 0 0 years. After that we build the periodograms using the 

FFT method ( Jenkins and Watts, 1969 ), the resonant argument 

σ is first transformed to z = e iσ ( i 2 = −1 ). 

2. To get smoothed version of the time series we apply the digital 

low-pass filter A on z and on the semi-major axis ( Nesvorny 

and Ferraz-Mello, 1997; Quinn et al., 1991 ). In our case the filter 

eliminates the components with period less than ≈300 years. 

3. We run over the original time series of the resonant argument 

from the starting point checking whether the difference be- 

tween the current point and the starting point is more than 

2 π . If so, we start the local classification of this section by a 

several steps: 

• If the length of the section is less than a certain “circula- 

tion” parameter (signed as cp , chosen ≈20 0 0 years, similar 

parameter has been used in Nesvorny and Morbidelli, 1998 ), 

this section is automatically qualified as circulating, the fol- 

lowing step is skipped and a new section is being started 

from the current point. 
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