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Interaction between the localized states in graphene
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a b s t r a c t

The formation of the localized magnetic moments is studied due to the presence of two-impurities in the
two sublattices of a single-layer graphene sheet. The interaction between two similar magnetic impuri-
ties and also the hybridizations are decisive in determining the boundary between the magnetic and the
non-magnetic states. A strong chemical potential dependence of the above phase boundary is evident. An
anomalous scaling of the boundary separating the above regions is more pronounced in the two-impurity
case when compared to that of the single impurity.

� 2018 Elsevier B.V. All rights reserved.

1. Introduction

The pioneering work of Andre Geim and Kostya Novoselov [1]
has triggered a huge interest in the scientific community to study
graphene, mainly motivated by their unusual electronic properties,
such as the behavior of non-massive chiral Dirac fermion at low
excitation energies. The high-electron mobility in graphene and
its planar structure make it suitable for applications in nanoscience
and nanotechnology leading to a new era of carbon-based
electronics.

Graphene, a two-dimensional allotrope of carbon with the sp2

hybridization state is distributed in a hexagonal lattice formed by
two interpenetrating triangular sublattices, A and B. In the lattice
plane, the s and p orbitals of the carbon atom form covalent bonds
and thus provide a high mechanical strength to graphene. The
remaining p orbitals of the carbon atoms in each sublattice, in
the direction perpendicular to the plane of the lattice, hybridize,
forming a conduction and a valence energy bands, known as p�

and p bands, respectively. The hexagonal distribution results in
two bands that touch each other at two high-symmetry points in
the Brillouin zone, K and K 0, known as Dirac points, thereby leading
to a zero gap semiconductor. Around these points the dispersion

relation is given by E ¼ ��hvF j~k j, with the energy E varying lin-

early as a function of the moment~k, where �h is the reduced Planck
constant and vF is the Fermi velocity. Hence, it is similar to the

dispersion relation of the photon, with the speed of light c playing
the role of the velocity of the electrons in the Fermi level of gra-
phene. As a two-dimensional Dirac fermion system, graphene pre-
sents unconventional and interesting electronic behavior. For
instance, graphene shows a minimum conductivity of about e2=h,
an anomalous quantum Hall effect and a nonzero cyclotron mass
mc described by E ¼ mcv2

F , although from the linear spectrum of
fermion in graphene it would be zero. This similarity with Dirac
fermions enables the prediction of the properties of the charge car-
riers in graphene from the relativistic Dirac equation, such as tun-
neling through a potential barrier without any reflection, which is
known as Klein’s paradox.

Impurity states are regarded as important contributors to the
unusual and singular properties of graphene [2,3]. In the last few
years there has been an increased attention to study the effect of
magnetic adatom in a pristine graphene due to its potential use
in spintronics. Doping with magnetic impurities could envisage
the creation of local spins in graphene including the possibility of
opening a gap. Recent progress in scanning tunneling microscopy
made it possible to position adatoms in graphene and image the
impurity states with high spatial resolution [4]. Various studies
have been performed to characterize the necessary conditions
under which the transition metal adatom on graphene can form
localized magnetic moment. A systematic first-principles study of
transition metals from Sc to Zn, including nonmagnetic adatoms
Cu and Au, embedded in graphene has also been performed [5].
Isolated hydrogen atoms absorbed on graphene are predicted to
induce magnetic moments [6]. Recently, two identical impurities
on a zigzag nanoribbon has been studied to demonstrate that the
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chemical potential and the spin-orbit coupling could drive the
transition of the local-spin exchange from ferromagnetism to anti-
ferromagnetism [7]. The impurity interaction control via the
adjustment of the chemical potential has also been considered to
observe that a weak repulsion is observed when the two atoms
reside on the same sublattice and a stronger attraction when they
are on different sublattices [8]. Double impurities have also been
considered for local density of states calculations [9].

The presence of a magnetic adatom in a metal has been suc-
cessfully studied using the Anderson model [10,11], which
recently has been applied also to study magnetic moment for-
mation in graphene [7,12,13]. Depending on the relation
between the constitutive parameters of this model, the adatom
orbital can be empty, single or doubly occupied. In particular,
for temperatures higher than the Kondo temperature [14], there
is a formation of local magnetic moment when the adatom and
the conduction electrons are weakly hybridized and the Cou-
lomb interaction between the electrons in the adatom orbital
is greater than their binding energy. Moreover, for hybridiza-
tion energy higher than the electron binding energy the orbital
presents the valence fluctuation regime [14]. It has been
observed that the coupling of a adatom to a graphene sublat-
tice results in a much easier formation of magnetic moment
due to the anomalous broadening of the electronic levels of
the adatom [14]. In the present work we study the formation
of the local magnetic moments due to the presence of two sim-
ilar magnetic impurities in pristine graphene. The formation of
the magnetic states in the single-layer graphene can be seen to
depend on the interaction between the two impurities as
observed in metals [11]. Moreover, the anomalous scaling of
the magnetic boundary separating the magnetic and non-
magnetic states alike the single-impurity in graphene continues
to exist. The chemical-potential driven phase transition is also
considered.

2. The model

The model Hamiltonian of graphene with two impurities hybri-
dized with two sublattices of a single-layer graphene as shown in
Fig. 1 is written as

H ¼ HTB þ Hf þ HV ð1Þ
where HTB is the tight binding Hamiltonian of the graphene, Hf is
the impurity Hamiltonian, HV is the hybridization of the adatom
localized states with the graphene conduction electrons.

The tight binding Hamiltonian is given by

HTB ¼ �t
X
hi;jir;l

ayrðRiÞbrðRjÞ þ H:c:
� � ð2Þ

where the operator arðRiÞ (brðRjÞ) annihilates a state with spin r at
the position RiðRjÞ on the sublattice A(B), hi; ji stands for summation
over the nearest neighbors and the parameter t is the nearest neigh-
bor hopping energy. In momentum space, we have

HTB ¼ �t
X
k;r

/ðkÞayk;rbk;r þ /ðkÞby
k;rak;r

h i
ð3Þ

where /ðkÞ ¼Pde
ik: �di with �d1 ¼ aðx̂=2þ

ffiffiffi
3

p
=2ŷÞ, �d2 ¼ aðx̂=2�

ffiffiffi
3

p
=2ŷÞ

and �d3 ¼ �ax̂ as the nearest neighbor vectors. a is the lattice
parameter. Diagonalizing the Hamiltonian (3) one generates
two bands ��ðkÞ ¼ �tj/ðkÞj, which can be linearized around
the Dirac points K at the corners of the Brillouin zone:
��ðKþ qÞ � �vF jqj, where vF ¼ 3ta=2 is the Fermi velocity of the
Dirac electrons.

The impurity Hamiltonian is described by

Hf ¼
X
r
�f ðf yarf ar þ f ybrf brÞ þ Uðna"na# þ nb"nb#Þ

þ Vabðf yarf br þ f ybrf arÞ; ð4Þ

where f yar (f ybr) is the creation operator of a state with a spin r ¼"; #
at the impurity of the sublattice A(B), nar ¼ f yarf ar and nbr ¼ f ybrf br
are the occupation number operators for the impurities in the sub-
lattices A and B respectively. �f is the energy of the adatom electron,
and U is the Coulomb interaction due to the double occupancy of an
energy level in the adatom. The impurities interact with each other
via the potential Vab. For simplicity we adopt a mean-field approx-
imation to the electronic correlations of the impurities,

Una"na# ¼ U
P

rhna�rif yarf ar � Uhna"ihna#i, where a ¼ a; b. Hence,
the impurity Hamiltonian can be rewritten as

Hf ¼
X
r
ð�arf yarf ar þ �brf

y
brf brÞ þ Vabf

y
arf br þ V y

abf
y
brf ar

where �ar ¼ �f þ Uhna�ri and �br ¼ �f þ Uhnb�ri. The impurity orbi-
tal of the sublattice B is sited at the origin of the sublattice B and
that of the sublattice A is at ra ¼ ar̂.

The hybridization of the impurity orbitals is given by

HV ¼ Vaffiffiffiffiffiffi
Na

p
X
k

eikxaaykrf ar þ Vbffiffiffiffiffiffi
Nb

p
X
k

by
krf br þ H:c; ð5Þ

where Na (Nb) denotes the number of atoms in the sublattice a (b),
Va and the Vb are the hybridization interactions of the impurities in
the sublattices A and B respectively.

3. The formalism

The formation of a magnetic moment depends on the occupa-
tion of the two spin states of the impurities. The localized
moment is formed when na" – na#. The interaction between the
impurities Vab is important to understand the relation between
the localized states of the single-layer graphene. The self-
consistent calculations of the density of states in the presence
of the hybridization and Vab is performed for the determination
of the occupation of the impurities. The occupation of the impu-
rity level can be determined by

nar ¼ 1
2p

Z l

�1
dxAafrðxÞ ð6Þ

where the spectral function is given by

AafrðxÞ ¼ �2IGR
afrðxÞ: ð7Þ

The single particle retarded Green’s function [15–18] of the f

electrons is GR
afrðtÞ ¼ �ihðtÞ f arðtÞ; f arðtÞ½ � and the Fourier transform

of that of the sublattice b can be written as

Fig. 1. Schematic diagram of the lattice structure of single layer graphene with two
impurity atoms, each one coupled to the lattices A and B, respectively, and to each
other.
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