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Abstract The main features of small amplitude waves generated by a planar piston-like surface in

a planar flow of a vibrationally non-ideal relaxing gas are investigated. It is found that the analytical

solution of the flow field for weak waves and central expansion wave propagation is influenced by

the relaxation time and van der Waals excluded volume.
� 2016 Faculty of Engineering, Ain Shams University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

A characteristic perturbation scheme for nonlinear hyperbolic
waves has received great attention during the past decade; it

has produced several new and interesting results, which may
find numerous applications in the field of continuum mechan-
ics. Using the same and some other related features to nonlin-
ear waves, Rarity [1], Chou and Chu [2], Chu [3], Kumar et al.

[4] and Singh et al. [5] have studied the nonlinear effects in
their works. Wen-rui [6] used the perturbation method to study
the weak shock and strong shock problems generated by the

piston motion in weak gravitational field. Problems of
propagation of weak planar and non-planar shock waves in
uniform and non-uniform gases have been investigated using

the perturbation scheme [7,8]. Xue [9] investigated the problem

of non-planar dust-ion acoustic shock waves with transverse
perturbation and deduced the Kadomtsev–Petviashvili Burgers
equation that describes the dust-ion acoustic shock waves.

Assuming the electrical conductivity to be infinite and
direction of the magnetic field to be orthogonal to the trajecto-
ries of gas particles, Singh et al. [10] used a systematic pertur-

bation scheme to obtain the analytical solution of the flow field
in non-uniform, radiative magnetogasdynamics. It is well
known that in the ideal gas case, the compressive phase of

the wave profile always steepens up into a shock wave [4].
Another interesting features of a relaxing gas lie in the obser-
vation that the far-field behavior of small amplitude motion is
governed by Burger’s equation, the solution of which exhibits

the property that any convective steepening is always diffused
by the diffusive nature of the relaxation [11]. However, the
presence of relaxation offers an interesting situation in which

the complete flow field is shock free [12]. Apart from all these,
the system governing the motion of a relaxing gas possesses
several novel features that make it worth of further study.

In this paper, we consider the one-dimensional planar
motion of a non-ideal relaxing gas in a semi-infinite long tube,
fitted with a piston at one end. The weak waves and expansive
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waves are generated by an impulsive start of a piston from rest
with a nonzero but finite acceleration. The paper is organized
as follows: after transforming the basic equations in character-

istic coordinate and jump conditions across a shock of
arbitrary strength, we devote Section 3 to the derivation of
flow field using the characteristics perturbation scheme. In

Section 4, assuming the piston acceleration is infinitely large,
we determine the field variables near the central expansion
wave. The last section consists of some final remarks and

conclusions.

2. Characteristic transformation

The equations describing the one dimensional unsteady planar
flow of non-ideal relaxing gases [11,13,14] are

qt þ uqx þ qux ¼ 0;

ut þ uux þ 1

q
px ¼ 0;

pt þ upx þ qa2ux ¼ �ðc� 1ÞqQ;

rt þ urx ¼ Q;

ð1Þ

where q P 0; u; p P 0 and r P 0 denote respectively the den-

sity, velocity, pressure and vibrational energy; the equilibrium

speed of sound a is known function defined as a ¼ cp
ð1�bqÞq

� �1=2
where c is the specific heat ratio lying in the region 1 < c < 2
for most gases and b is van der Waals excluded volume, which

lies in the range 0:9� 10�3 6 b 6 1:1� 10�3 (SI unit is m3 per
unit mass). The independent variables t and x denote respec-

tively time and space. It may be noted that the case b ¼ 0 cor-
responds to the ideal relaxing gas. If not stated otherwise, an
alphabet (variable) as a subscript indicates partial differentia-

tion with respect to that variable. The quantity Q denotes
the rate of change of vibrational energy, which is a function
of p; q and r, given by

Q ¼ �rðp; qÞ � r
s

; ð2Þ

where �r ¼ r0 þ cfpð1� bqÞ=q� ð1� bq0Þp0=q0g is the equi-
librium value of r and the suffix 0 refers to the initial rest con-
dition; the quantities s and c are respectively the relaxation

time and the ratio of vibrational specific heat to the specific
gas constant. The situation Q ¼ 0 corresponds to a physical
process involving no relaxation; indeed, it includes the follow-
ing cases

(i) The vibrational mode is inactive.
(ii) The vibrational mode follows the translational mode

accordingly as the flow is frozen i.e. ðr ¼ const:Þ
(iii) As s ! 1.

The van der Waals equation of state is taken to be of the
form

pð1� bqÞ ¼ qRT; ð3Þ
where R is the specific gas constant and T is the translational
temperature. It is easy to see that the system (1) is hyperbolic

with four families of characteristics, two of which dv
dt
¼ u� a,

represent waves propagating in the �x directions with the

effective speed u� a, and the remaining dv
dt
¼ u form a set of

double characteristics and represent the particle paths or

entropy waves. As discussed in [3], we consider the case where
the boundary conditions are prescribed on the wave front and
piston surface for observing the wave phenomena. It is conve-

nient to use the characteristics of the governing system as the
reference coordinate system. In order to study the weak wave
and central expansion wave phenomena, we approach the
wave front from the undisturbed medium and the boundary

conditions u ¼ 0; q ¼ q0; p ¼ p0 and r ¼ r0 on the wave
front. If the piston path is given by x ¼ fðtÞ, the piston speed

satisfies the relation u ¼ f0ðtÞ, where the prime indicates the
derivative with respect to the argument. We now introduce
the characteristic variables f and g such that

ft þ ðuþ aÞfx ¼ 0; gt þ ugx ¼ 0: ð4Þ
If g is a particle tag so that g must be constant along the

trajectory of the fluid particle dx=dt ¼ u in the ðx; tÞ plane.
The particle and its path may be labeled by g ¼ t0, when the
characteristic wave front traverses a particle at time t0 and if

f is a wave tag so that f is constant along an outgoing charac-
teristics dx=dt ¼ uþ a in ðx; tÞ plane and will be labeled by
f ¼ t�, when an outgoing wave is generated at time t� [3]

(One may see Fig. 1). Hence using these particle path and out-
going characteristics, one may find the transformation relation
between ðx; tÞ and ðf; gÞ as
xf ¼ utf; xg ¼ ðuþ aÞtg: ð5Þ

The transformation from ðx; tÞ plane to ðf; gÞ plane is one
to one iff the Jacobian J ¼ �atftg is nonzero everywhere.

Indeed, the solution in terms of the characteristic parameters

will get up unbounded iff tf ¼ 0. In terms of new characteristic
coordinates f and g, the equations (1) can be written as

ðaqf � qufÞtg þ qugtf ¼ 0; ðqauf � pfÞtg þ pgtf ¼ 0;

ðqauf � pfÞtg � qaugtf ¼ �ðc� 1ÞtgtfqQ; rf ¼ �Qtf;
ð6Þ

with the following boundary conditions on the piston

t ¼ f; x ¼ fðfÞ; u ¼ f0ðfÞ at g ¼ 0: ð7Þ
The wave front is either a characteristic front or a shock

wave and the boundary conditions depend on the wave front.
If the wave front is a characteristic front, then all the flow vari-

ables are continuous across it, that is

Figure 1 Characteristic transformation of physical plane to

ðf; gÞ coordinates.
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