
ENGINEERING PHYSICS AND MATHEMATICS

Flow of a Jeffrey fluid between torsionally

oscillating disks

G. Bhaskar Reddy a, S. Sreenadh a, R. Hemadri Reddy b,*, A. Kavitha b

a Department of Mathematics, Sri Venkateswara University, Tirupati 517502, India
b School of Advanced Sciences, VIT University, Vellore 632014, India

Received 30 June 2014; revised 2 September 2014; accepted 9 September 2014
Available online 7 October 2014

KEYWORDS

Jeffrey fluid;

Torsionary oscillating disks;

Frequency

Abstract In this paper, the flow of Jeffrey fluid between two torsionally oscillating disks is studied.

This problem is solved in two cases. The first case is one disk oscillating and the other is at rest and

the second case is two disks are oscillating with same frequency and speed but with phase difference

of 180�. We found that the radial–axial flow has a mean steady component and a fluctuating com-

ponent of frequency twice that of the oscillating disk. When the Jeffrey parameter k tends to zero,

the results coincide with the corresponding Newtonian case obtained by Rosenblat.
� 2014 Production and hosting by Elsevier B.V. on behalf of Ain Shams University.

1. Introduction

The study of torsional vibrations of break disks is very impor-
tant especially in applications where high power transmission
and high speed are present. The model of flow between tor-
sional oscillating disks may be observed in the turbine–cou-

pling–generator rotor system and frictionless bearings. The
torsional oscillation of a plate in Newtonian fluids has been
discussed by Rosenblat [1]. He obtained the solution by

expanding velocity components and the pressure in powers
of the amplitude of oscillation of the plate and showed that
the solution is highly convergent within the boundary layer.

He has also discussed the case when the fluid is confined

between two torsionally oscillating plates [1]. Similar problems
in Reiner–Rivlin fluids were discussed by Srivastava [2,3]. In

1959, Rosenblat examined the flow between torsionally oscil-
lating disks in the two cases: (i) one disk oscillating and the
other at rest and (ii) both disks oscillating with the same fre-

quency and speed, but with a phase difference of 180�. He
developed and investigated the transverse and radial–axial
flows for both small and large Reynold numbers. The theoret-

ical analysis has been extended by Rajeswari [4] for Reiner–
Rivlin fluids. She found that the radial–axial flow has a mean
steady component and a fluctuating component of frequency
twice that of the oscillating disk, a result similar to that for

the Newtonian case obtained by Rosenblat. Bhatnagar and
Rajeswari [4] and Srivastava have studied the same problem
for a special case of the Rivlin–Ericksen second order fluid.

Frater [5] has discussed only the first case of oldroyd fluid.
Bhatnagar and Rajeswari have found that a reversal of the
direction of the steady secondary flow is a characteristic fea-

ture of the Rivlin–Ericksen fluid and pointed out that it is
always possible to find a value of the Reynolds number above
which the flow is in reversed direction. The flow of an

* Corresponding author. Mobile: +91 9791452220.

E-mail address: rhreddy@vit.ac.in (R. Hemadri Reddy).

Peer review under responsibility of Ain Shams University.

Production and hosting by Elsevier

Ain Shams Engineering Journal (2015) 6, 355–362

Ain Shams University

Ain Shams Engineering Journal

www.elsevier.com/locate/asej
www.sciencedirect.com

http://dx.doi.org/10.1016/j.asej.2014.09.004

2090-4479 � 2014 Production and hosting by Elsevier B.V. on behalf of Ain Shams University.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.asej.2014.09.004&domain=pdf
mailto:rhreddy@vit.ac.in
http://dx.doi.org/10.1016/j.asej.2014.09.004
http://www.sciencedirect.com/science/journal/20904479
http://dx.doi.org/10.1016/j.asej.2014.09.004


incompressible visco-elastic Maxwell fluid between two paral-
lel infinite disks executing small torsional oscillations in their
own plane is discussed by Verma [6]. He found that with the

increase of relaxation time parameter the elastic effects domi-
nate in the region away from the oscillating disk and for small
relaxation time, viscous effects permeate the entire flow.

Verma et al. [7] studied the flow induced in a viscous incom-
pressible fluid from small torsional oscillations of an imperme-
able infinite disk bounded coaxially by another stationary
naturally permeable infinite disk. He found that the steady

radial velocity increases in magnitude with an increase of Rey-
nolds number. Raghupathi Rao et al. [8] investigated the flow
of a viscous fluid confined between two torsionally oscillating

disks oscillating with the same frequency, but rotating with dif-
ferent, angular speeds about axes normal to the disks but not
coincident. Sharma et al., studied the flow of an incompressible

second-order fluid due to torsional oscillations of two infinite
disks. They found that the effect of second order forces
increases the amplitude of the oscillation of the axial velocity.
The unsteady MHD flow of an incompressible viscous

electrically conducting fluid contained between two torsionally
oscillating eccentric disks has been investigated by Ragupathi
Rao. Torsional oscillation of an infinite disk in a viscous liquid

bounded by a porous medium fully saturated with the liquid
was discussed by Srivastava. He found that the depth of pen-
etration of the flow in the porous medium is proportional to

the square root of the permeability of the medium.
Srivastava et al. discussed the flow due to torsional oscil-

lations of infinite disks at a small distance from the

unbounded porous medium when the entire space between
the disks and the porous medium is filled with a second
grade fluid. The problem of the flow of an incompressible
non-Newtonian second order fluid between two enclosed tor-

sionally oscillating disks has been discussed by Singh et al..
The effects of transducer compliance on transient stress
measurements in torsional flow of a viscoelastic fluid are

investigated by Dutcher et al. [9]. Pawan kumar Sharma
et al. [10] investigated the unsteady laminar flow of an
incompressible viscous electrically conducting fluid in a por-

ous medium fully saturated with the liquid and bounded by
torsionally oscillating disk in the presence of a transverse
magnetic field.

Nadeem et al. [11] studied the effect of Jeffrey fluid with
variable viscosity in the form of a well known Reynolds model
of viscosity in an asymmetric channel. Akbar et al. [12] dis-
cussed a non-Newtonian fluid model for a blood flow through

a tapered artery with a stenosis by assuming blood as Jeffrey
fluid. Nadeem et al. [13] discussed the closed form analytical
and numerical solutions of the peristaltic flow of a Jeffrey fluid

in an inclined tube with different viscosities and with different
wave shapes. Non-Newtonian fluid model for blood flow
through a tapered artery with a stenosis and variable viscosity

by modeling blood as Jeffrey fluid has been studied by Akbar
et al. [14]. The effect of temperature-dependent viscosity on the
Peristaltic flow of Jeffrey fluid through the gap between two

co-axial horizontal tubes was analyzed by Akbar et al. [15].
Akbar et al. [16] studied a non-Newtonian fluid model for
blood flow through a tapered artery with a stenosis by assum-
ing blood as Jeffrey fluid. Hayat et al. [17] examined the flow of

an incompressible Jeffrey fluid over a stretching surface. Hayat
et al. [18] described the mixed convection stagnation point flow
and heat transfer of a Jeffrey fluid toward a stretching surface.

The boundary layer stretched flow of a Jeffrey fluid subject to
the convective boundary conditions was investigated by Hayat
et al. [19].

In this chapter, the flow of Jeffrey fluid between two tor-
sionally oscillating disks is studied. This problem is solved in
two cases. The first case is one disk oscillating and the other
is at rest and the second case is two disks are oscillating with

same frequency and speed but with phase difference of 180�.
We found that the radial–axial flow has a mean steady compo-
nent and a fluctuating component of frequency twice that of

the oscillating disk. When the Jeffrey parameter k tends to
zero, the results coincide with the corresponding Newtonian
case obtained by Rosenblat.

2. Mathematical formulation

We consider a body of a Jeffrey fluid bounded by two Infinite

parallel plane disks which are represented by the plane z= 0
and z= d in a cylindrical polar co-ordinate system. The disks
perform torsional oscillations about the axis r = 0. If u, v and

w be respectively the radial, transverse and axial velocity com-
ponents, p be the pressure, q be the density, l is the dynamic
viscosity, k is the ratio of relaxation to retardation time and
m is the kinematic viscosity.

The constitutive equations for Jeffrey fluid (Vajravelu et al.,
[20]) are

T ¼ �PIþ S

S ¼ l
1þ k1

_cþ k2€c½ �

where P is pressure, S is extra stress tensor, T is the stress, I is

identity tensor, l is dynamic viscosity, k1 is the ratio of relax-
ation time and retardation times, k2 is the retardation time, c is
rate of strain tensor and the dots over the quantities denote
differentiation. The quantities _c and €c are defined by

Nomenclature

u radial velocity component

m transverse velocity component
w axial velocity component
p pressure
q density

l dynamic viscosity
k Jeffrey parameter

t kinematic viscosity

R Reynolds number
n frequency
X angular speed
X
n amplitude
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