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a b s t r a c t

There is magnetic force acting on the wall of a square coaxial transmission line when TEM wave
propagates in it. The self-inductance can be determined based on a conformal transformation for the
field region, which demonstrates that the inductance only depends on the side length ratio of the two
walls instead of the length of the walls. The magnetic force on each side of the walls is then calculated by
employing the principle of virtual work. It is proved that the magnetic force has the same magnitude and
opposite direction to the electric force. And then the electromagnetic force on the wall is zero.
The general meaning of this conclusion for all kinds of coaxial transmission line is proposed.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The coaxial line is an important type of transmission line used
extensively in microwave engineering [1,2]. The electric force on
the walls of some typical coaxial lines has been studied [3,4].
However, when TEM wave travels in a coaxial line, there is
magnetic force acting on the walls [5]. The aim of this article is
focused on determining the magnetic force on the walls of a
square coaxial transmission line. The conformal mapping method
is employed to calculate the self-inductance as the function of the
side length ratio of two walls. Then magnetic energy is obtained.
Using the principle of virtual work, the magnetic forces exerted on
the walls of a square coaxial line are achieved with elliptic
functions and integrals. Based on the result, the electric force on
the wall is also studied. It is proved that magnetic force has the
same magnitude and opposite direction to the electric force. So the
electromagnetic force on wall is zero when TEM wave propagates
in the coaxial line. This conclusion has the general meaning for all
kinds of coaxial transmission lines.

2. Field region transformation

TEM wave travels in a square coaxial line. Fig. 1 illustrates the
cross section of the line. Let l1 and l2 denote the side length of the
inner and outer square wall respectively. When the longitudinal
length of the line is sufficiently greater than l2, the field H and E in
this problem may be regarded as 2-D static field in the complex s-
plane where the cross section is [6]. Suppose the current on the

wall is I and the traverse voltage between two walls in the cross
section is U, we may easily determine them from telegraph
equations below [7]

∂2I
∂z2

−μ0ε0
∂2I
∂t2

¼ 0;
∂2U
∂z2

−μ0ε0
∂2U
∂t2

¼ 0 ð1Þ

Due to the symmetry, the field region opqro in the s-plane is
only considered. That region can be mapped onto the upper t-
plane of Fig. 2 by the Schwarz–Crystoffel transformation [8]

ds
dt

¼ 1
2k

t−3=4ðt−1Þ−1=2 t−
1

k2

� �−1=2

ð2Þ

Introducing a transformation

t ¼ u2 ð3Þ
we map the field region in the upper t-plane to the first quadrant
of u-plane depicted in Fig. 3.

Eq. (2) then becomes

s¼
Z u

0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uð1−u2Þð1−k2u2Þ

q ð4Þ

which is a super elliptic integral [9]. Integrating Eq. (4) gives

s¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ kÞ

p sn−1ðξ; λÞ þ sn−1ðξ; λ′Þ� � ð5Þ

where sn−1ðξ; λÞ is an inverse elliptic function. The variable ξ is

ξ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ kÞu
ð1þ uÞð1þ kuÞ

s
ð6Þ

and the complementary moduli λ and λ′ satisfy

KðλÞ
Kðλ′Þ ¼

1þ τ

1−τ
; λ2 þ λ′2 ¼ 1 ð7Þ
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where K(λ) is the complete elliptic integration of the first kind and
τ is the ratio of the two side length

τ¼ l1
l2

ð8Þ

Finally, employing the following transformation

u¼ snϑ ð9Þ
the field region in the first quadrant of the u-plane is mapped into
the rectangle in the ϑ-plane of Fig. 4 [10]. Two side lengths of the
rectangle are K(k) and K(k′). The complementary moduli k and k′
satisfy

k¼ λ−λ′
λþ λ′

� �2

; k2 þ k′2 ¼ 1 ð10Þ

3. Self-inductance

In the ϑ-plane the field is bounded by the rectangle and
uniform. Notice the magnetic field is along the ϑR-direction,

so the self-inductance of the square coaxial line per unit long-
itudinal length can be computed directly as [11]

L¼ μ0
Kðk′Þ
8KðkÞ ð11Þ

Eqs. (11), (10) and (7) demonstrate that the self-inductance
only depends on the side length ratio of the two walls rather than
the length of the walls. The function curve of the normalized self-
inductance L/μ0 versus the side length ratio τ is plotted in Fig. 5.

Hence, along the square coaxial line the linear density of
magnetic energy is

wm ¼ 1
2
LI2 ð12Þ

4. Magnetic force on the walls

Referring to Fig. 1, the distance between the center to the outer
wall is

x2 ¼ l2=2 ð13Þ
Regard x2 as a generalized coordinate. Along the square coaxial

line the linear density of magnetic force on each side of the outer
wall can be determined by using the principle of virtual work [12]

f 2 ¼
1
4
∂Wm

∂x2

���
I ¼ c

¼ 1
4
dl2
dx2

∂Wm

∂l2

���
I ¼ c

¼ 1
2
∂Wm

∂l2 I ¼ c
ð14Þ
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Fig. 1. The cross section of a square coaxial line in s-plane.
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Fig. 2. The t-plane.
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Fig. 3. The u-plane.
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Fig. 4. The ϑ-plane.
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Fig. 5. The function curve of L/μ0 versus τ.
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