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Abstract The aim of this attempt was to present an efficient algorithm for the evaluation of error

bound of triangular subdivision surfaces. The error estimation technique is based on first order dif-

ference and this process is independent of parametrization. This technique can be easily generalized

to higher arity triangular surfaces. The estimated error bound is expressed in-terms of initial control

point sequence and constants. Here, we efficiently estimate error bound between triangular surface

and its control polygon after k-fold subdivision and further extended to evaluate subdivision depth

of the scheme.
� 2016 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Subdivision is a simple and popular method to generate

smooth limit curves and surfaces from discrete set of data
points. It is an iterative algorithm, which is based on simple
refinement rules to generate increasingly dense sequence of

points under suitable hypothesis, converging to a continuous
and smooth function. Starting from an initial control polygon,
a subdivision scheme refers the computed values at the previ-

ous step according to the subdivision rules. The scheme is said
to be convergent if there exists a limit curve. Efficiency of sub-
division schemes is their flexibility and simplicity and they
found their way into wide range of applications in computer

graphics, medical imaging, industrial design and automotive
design, etc. [1–3].

Triangular surfaces [4] are one of the fundamental para-
digms of Computer Aided Geometric Design (CAGD). These
are defined by de Boor nets and have a regular triangular
structure. This class of triangular surfaces shares the properties

of univariate [5] and tensor product B-splines [6]. The proce-
dure for subdividing triangular surfaces exactly parallels the
subdivision for tensor product B-spline surfaces. Actually,

these are extension of B-splines surfaces.
For many applications such as rendering, intersection test-

ing or design, it is important to know, how well the control

polygon approximate the exact curve or a surface. In the last
decade several researchers attempt to answer the question
and to improve the rule to estimate error bounds. The tech-

niques presented in [7–11] for computation of error bounds
are based on parametrization, so they cannot be generalized
to subdivision surfaces easily, methods presented in [12–14]
are based on eigen analysis. Zeng and Chen [15] introduced

the concept of neighbor points and by using the first-order dif-
ference of control points of Catmull–Clark surfaces, they
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obtained the rate of convergence of control meshes of
Catmull–Clark surface. From the result of convergence, they
derived a computational formula of subdivision depth for

Catmull–Clark surfaces. Cheng and Yong [16] introduced
computational formula for subdivision depth, which is based
on second order forward differences for extra-ordinary Cat-

mull–Clark subdivision surface patches. Mustafa et al. [17–
23] have estimated error bound for binary, ternary, quater-
nary, non-stationary, n-ary curve, surface and volumetric

model in-terms of maximal first order differences of the initial
control point sequence and constants that depend on the sub-
division mask. Huang et al. [24] derive a bound on the distance
between a Catmull Clark subdivision surface patch and its

limit face in terms of the maximum norm of the second order
differences of the control points and a constant that depends
only on the valence of the patch. Later on Mustafa et al. esti-

mate the subdivision depth of Bajaj and
ffiffiffi
3

p
subdivision schemes

for both regular and irregular patches [25,26]. Moncayo and
Amat [27] presented error bounds for a class of subdivision
schemes based on the two-scale refinement equation. In recent

years Hashmi et al. [28] estimated the subdivision depth for Li
subdivision scheme for regular and irregular patches.

In the present literature survey, it is evident that no such
attempt has been made to evaluate subdivision depth for trian-

gular subdivision surfaces. In this paper author successfully
articulates the formula for subdivision depth for triangular
surfaces based on first order differences by using estimation

techniques.
The rest of the paper is arranged in following fashion: Some

definition and preliminary notations are given in Section 2.

Section 3 is devoted for the proof of main result based on some
preliminary results. Future research directions are given in Sec-
tion 4. To maintain the presentation of paper as simple as pos-

sible for readers, notations and typical mathematical proof of
basic results are provided in the Appendices.

2. Definition and notations

Let pki;j 2 RN, i; j 2 Z, denote a sequence of points in RN,
N P 2, where k is a non-negative integer then binary subdivi-
sion process for triangular surfaces [1, pp. 14–19] in our

context can be restated as

pkþ1
iþðmþa�1Þ=2;jþðmþb�1Þ=2 ¼

Xm�1

r¼�mþ1

Xm�1

s¼�mþ1

Xm
l¼0

aa;r;lab;s;ldm;lp
k
iþr;jþs;

ð2:1Þ
where a; b 2 f0; 1g or f1; 2g;m is greater than 2, aa;j;l and dm;l

are defined by

aa;j;l ¼ 2�m
m

2ðmþa�1
2

� jÞ � l

� �
; dm;l ¼ 2�mþ2 m

l

� �
;

for a ¼ 0; 1; 2, j ¼ �mþ 1; . . . ;m� 1, l ¼ 0; . . . ;m, called sub-

division mask. It is cautioned that (2.1) depends on labeling of
the control polygon. For example for m = 2, 3, and 4, labeling
of old and new points (A;B;C;D;E;F;G) is shown in Figs. 1

(a) and (b) and 2 respectively.

Given initial values p0i;j 2 RN, i; j 2 Z, then in the limit

k ! 1, the process defines an infinite set of points in RN. A
necessary condition for the convergence of the subdivision pro-

cess (2.1) for arbitrary initial data is that

Xm�1

r¼�mþ1

Xm�1

s¼�mþ1

Xm
l¼0

aa;r;lab;s;ldm;l ¼ 1; ð2:2Þ

where a; b 2 f0; 1g or f1; 2g.
Let us suppose

bk
t ¼ max

i;j
Dk

i;j;t

��� ���; k P 0; t ¼ 1; 2; ð2:3Þ

where

Dk
i;j;1 ¼ pkiþrþ1;jþs � pkiþr;jþs; 8 r; s 2 Z;

Dk
i;j;2 ¼ pkiþs;jþrþ1 � pkiþs;jþr; 8 r; s 2 Z:

(
ð2:4Þ

Suppose for a ¼ 0; 1; 2,
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8>>>>><
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where
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j¼q

aa;j;l:

Suppose further that

Mk
ða;bÞ ¼ max

i;j
pkþ1
iþðmþa�1Þ=2;jþðmþb�1Þ=2 �

1

2
pki;j þ pkiþa�1;jþb�1

� �����
����;
ð2:6Þ

where a; b 2 f0; 1g or f1; 2g.
Also
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where er;l ¼
Pr

p¼�mþ1ða1;p;l � a2;p;lÞ and fr;l ¼
Pr

p¼�mþ1ða0;p;l�
a1;p;lÞ.

Rest of the notations are in Appendix A.

2.1. Subdivision depth

Given control polygon of n-ary subdivision surface and an
error tolerance �, if we subdivide control polygon k times, so
that the error between resulting polygon and subdivision sur-
face is smaller than �, then k is called subdivision depth of sub-

division surface with respect to �.

3. The error bounds for triangular surfaces

In this Section, the main result for error bounds is presented
for triangular surfaces, which is based on some preliminary
results. Finally, the section ends on subdivision depth formula.

Lemma 3.1. Given initial triangular control polygon p0i;j ¼ pi;j,

i; j 2 Z, let the values pki;j; k P 0 be defined recursively by

subdivision process (2.1) together with (2.2) then
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