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Abstract In this paper, a fractional model for the computation of temperature and heat flux

distribution in a semi-infinite solid is discussed which is subjected to spatially decomposing, time-

dependent laser source. The apt dimensionless parameters are identified and the reduced tempera-

ture and heat flux as a function of these parameters are presented in a numerical form. Some special

cases of practical interest are also discussed. The solution is derived by the application of the

Laplace transform, the Fourier sine transform and their derivatives. Also, we developed an alterna-

tive solution of it by using the Sumudu transform, the Fourier transform and their derivatives.

These results are received in compact and graceful forms in terms of the generalized Mittag-

Leffler function, which are suitable for numerical computation.
� 2016 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In the modeling of many physical and chemical processes and
engineering systems fractional differentiation has been widely
used. The instances are electrochemistry and electromagnetic

waves, diffusion waves, fractal electrical networks, electrical
machines, nanotechnology, viscoelastic supplies and systems,
quantum evolution of complex systems [1], and heat conduc-

tion [2]. Automatic control is also a field in which many

applications of fractional differentiations have been antici-
pated. Recently, it is demonstrated that the real state of a
fractional order system is not exactly observable [3]. However,
the authors have also have demonstrated that the pseudo state

vector of the pseudo state space description can be estimated
using a Luenberger like observer. As fractional order deriva-
tives and integrals explain the memory and genetic properties

of different substances, the above mentioned new models are
more sufficient than the earlier used integer order models [4].
This is the biggest advantage of the fractional order models

in comparison with integer order models in which such effects
are neglected. A semi-infinite solid is an idealized body that has
a single plane surface and extends to infinity in all directions.

This idealized body is used to specify that the temperature
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change in the part of the body in which we are interested is due
to the thermal situation on a single surface. The earth, for
instance, can be considered as a semi-infinite medium in deter-

mining the variation of temperature close to its surface. A
thick wall can also be modeled as a semi-infinite medium if
we are interested in the variation of temperature in the region

near one of the surfaces, and the other surface is extreme to
have any impact on the region of interest during the time of
surveillance. In view of great importance of fractional differen-

tial equations many authors have paid attention for handling
linear and nonlinear fractional differential equations [5–7]. In
recent years many authors have employed various analytical
schemes to investigate nonlinear problems arising in scientific

and technological fields such as nonlinear oscillation of a cen-
trifugal governor system [8], dynamic analysis of generalized
conservative nonlinear oscillators [9], nonlinear vibrating sys-

tems [10], and frequency analysis of strongly nonlinear gener-
alized duffing oscillators [11].

2. Preliminary results

Consider semi-infinite solid initially at temperature T0. The left
face of the solid is suddenly raised to temperature Ts at time

zero and defining h ¼ T�T0

Ts�T0
. If we suppose, constant thermal

conductivity, no internal heat generation and insignificant
temperature variation in the y and z directions. The relevant
differential equation is given by classical non-homogenous
heat equation defined by [12]:

@h
@t

¼ C
@2h
@x2

; ð1Þ

where K is the thermal diffusivity. Subject to boundary condi-
tions are

t ¼ 0; h ¼ 0

x ¼ 0; h ¼ 1

x ! 1; h ! 0

9>=
>; ð2Þ

The following well-known facts are considered to study the
temperature distribution and heat flux in the semi infinite solid.

The Laplace transform is defined by [13]

L fðxÞf g ¼
Z 1

0

e�stfðtÞdt; ReðsÞ > 0: ð3Þ

The Fourier sine transform is defined by [14]

Fðn; tÞ ¼
ffiffiffi
2

p

r Z 1

0

f x; tð Þ sin nx dx: ð4Þ

The error function of x is defined by [15]

erfðxÞ ¼ 2ffiffiffi
p

p
Z x

0

expð�z2Þdz ð5Þ

and the complimentary error function of x is defined as

erfcðxÞ ¼
2ffiffiffi
p

p
Z 1

x

expð�z2Þdz: ð6Þ

A generalization of the Mittag-Leffler function [16,17]

EaðzÞ ¼
X1
n¼0

zn

C naþ 1ð Þ ; ða 2 C;RðaÞ > 0Þ ð7Þ

was introduced by [18] in the general form

Ea;bðzÞ ¼
X1
n¼0

zn

C naþ bð Þ ; a; b 2 C;RðaÞ > 0ð Þ ð8Þ

also derived by [19] in the following integralZ 1

0

e�sttb�1 dk

dzk
Ea;b xtað Þdt ¼ k!sa�b

sa � xð Þkþ1
: ð9Þ

The fractional derivative of order a > 0 is presented by

Caputo [20] in the form

0
cDa

x fðxÞ ¼ 1

C m� að Þ
Z x

0

fðmÞðsÞ
x� sð Þa�mþ1

ds; m� 1 < a < m

¼ dmfðtÞ
dtm

; if a ¼ m;m 2 N ð10Þ

where dmfðtÞ
dtm

is the mth derivative of order m of the function fðtÞ
with respect to t. The Laplace transform of this derivative is
given by [4]

L 0
cDa

x fðxÞ; s� � ¼ sa�fðsÞ �
Xm�1

k¼0

sa�k�1fðkÞð0þÞ; m� 1 < a � m:

ð11Þ
A generalization of the Caputo fractional derivative opera-

tor Eq. (10) is given by [21], by introducing a right-sided frac-
tional derivative operator of two parameters of order
0 < a < 1 and 0 6 b 6 1 as

0D
a;b
aþfðxÞ ¼ I

bð1�aÞ
aþ

d

dx
I
ð1�bÞð1�aÞ
aþ fðxÞ

� �
: ð12Þ

If we put b ¼ 1, Eq. (12) reduces the Caputo fractional

derivative operator assigned from Eq. (10).
Laplace transform formula for this operator [21] is given by

L 0D
a;b
x fðxÞ; s� � ¼ sa~fðsÞ � sb a�1ð ÞIð1�bÞ 1�að Þ

0þ fð0þÞ; 0 < a � 1:

ð13Þ
Sumudu transform formula for this operator [21,22], holds

the formula

S 0D
a;b
x fðxÞ;s� �¼ u�a~fðuÞ�u�b a�1ð Þþ1I

ð1�bÞ 1�að Þ
0þ fð0þÞ; 0< a� 1;

ð14Þ
where the initial value term

I
ð1�bÞ 1�að Þ
0þ fð0þÞ; ð15Þ
involves the Riemann–Liouville fractional integral operator of
order 1� bð Þ 1� að Þ evaluated in the limit as x ! 0þ. For
more details and properties of this operator see in [23].

The simplest Wright function is defined by [24]

W a; b; zð Þ ¼
X1
k¼0

1

C akþ bð Þ
zk

k!
; where a; b; z 2 C: ð16Þ

Generalized k-Wright function is an exciting generalization
of Wright function Eq. (16). Some exciting properties of the
generalized k-Wright function are obtained by [25].

Following integral [26] is required for simplificationZ 1

0

n sinnx Ea;aþ1 �n2Kta
� �

dn ¼ p
2Kta

W � a
2
; 1;

�xffiffiffiffiffiffiffi
Kta

p
	 


:

ð17Þ
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