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A B S T R A C T

Grain boundary segregation of dopants plays a crucial role in materials properties. To investigate the dopant
segregation behavior at the grain boundary, an enormous number of combinations have to be considered in the
segregation of multiple dopants at the complex grain boundary structures. Here, two data mining techniques,
the random-forests regression and the genetic algorithm, were applied to determine stable segregation sites at
grain boundaries efficiently. Using the random-forests method, a predictive model was constructed from 2% of
the segregation configurations and it has been shown that this model could determine the stable segregation
configurations. Furthermore, the genetic algorithm also successfully determined the most stable segregation
configuration with great efficiency. We demonstrate that these approaches are quite effective to investigate the
dopant segregation behaviors at grain boundaries.

1. Introduction

A grain boundary is formed by bonding two crystals with crystal-
lographically different orientations and hence usually has different
atomic configurations from those in the bulk. With such atomic
configurations, different phenomena from the bulk are often observed
[1–12]. For instance, preferential solute solution at the grain boundary,
referred to as solute segregation, is often observed and is known to
influence the macroscopic properties of materials. Hence, dedicated
research for the past several decades has elucidated the effects of solute
segregation at grain boundaries on the materials properties [1–5]. For
instance, Duscher et al. unraveled the mechanism underlying embrit-
tlement at bismuth-induced copper grain boundaries with theoretical
calculations and results from electron microscopy [6]. Guang-Hong Lu
et al. examined the grain boundary segregation at aluminum grain
boundaries and concluded that a variety of solute atoms largely
changes the manner of embrittlement [7]. Aside from mechanical
properties, it is also reported that the segregation of multiple elements
at grain boundaries influences electrical properties [13–15], ionic
conductivity [16,17], and other functional properties [18–20].

To further understand the fundamental mechanisms underpinning
grain boundary segregation and its impact on the materials properties,
a large number of combinations of solutes and grain boundaries have to
be investigated systematically. However, the determination of the
segregation configurations at the grain boundary always encounters
great difficulties because many atomic sites are present and therefore a

large number of combinations of segregation configurations have to be
considered. To determine segregation configurations, molecular dy-
namic and Monte Carlo simulations are often been used [21–23].
Although such simulations do determine stable configurations, a large
number of calculation steps, which cannot be executed in parallel, are
necessary. Hence, more efficient approaches are required for a
systematic investigation of the grain boundary segregation.

In this study, aided by information science, two efficient approaches
were applied for this purpose. The first is a machine learning method
based on the random-forests algorithm, which is an ensemble learning
method for classification and regression [24]. By learning the relation-
ships between the atomistic configuration and segregation energy, the
regression model was constructed and then used to predict the stable
segregation configurations. The genetic algorithm is similar to a Monte
Carlo approach but searches for a stable configuration more efficiently
by performing mutation, crossover, and selection operations [25].
Although those methods have been effectively used in materials
science, their application to grain boundary segregation has not been
exploited to date.

2. Methodology

The two statistical method, random-forests regression and genetic
algorithm, were applied to search for the stable segregation configura-
tions. To establish this methodology, an efficient calculation method is
suitable. Thus, static lattice calculations using an empirical potential,
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with GULP code [26], was used for structure optimization and energy
calculations. Dopant segregation at Cu grain boundaries was investi-
gated because it is well known to influence material properties [6,27].
In our previous work, an empirical potential was established that
reproduced the results calculated by the first principles calculation
[11].

The segregation behavior of silver atoms at the Σ5[001]/(210) grain
boundary of copper was selected as a testing ground for our approach.
The supercells, including this grain boundary (Fig. 1), have 20 atomic
sites at the boundary. Segregation of up to seven silver atoms were
considered because it is known that this grain boundary has four stable
atomic site for silver segregation, 1, 6, 11, and 16, from the previous
study [11], and hence seven can be considered to be sufficient. In the
result, all atomistic configurations are 137,979 as the following
equation:
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where N is the number of all combination of the atomic configurations,
and i means the segregated silver atoms. In the brute-force method, the
energy calculation and structure optimization was performed on these
all 137,979 possible atomistic configurations.

The segregation energy, Eseg, is defined as
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where n is the number of silver atoms; En seg in GB and En seg in Bulk
represent the total energy of the supercells for the grain boundary
and bulk model with n-site segregation (substitution) respectively, and
EGB and EBulk do the total energy of the supercells for the grain
boundary and bulk and without segregation (substitution), respec-
tively. Since the segregation energy is estimated on the relative energy
of the solution energy between the bulk and GB, the energy of the
isolated Ag was canceled out. For the calculation of structure relaxa-
tion, the empirical potential was used in the embedded-atom method
as an embedding function of type one [11].

Each atomic configuration is described as binary data of twenty-bit
length, where 0 and 1 denote copper and silver, respectively. For instance,
the binary description of (0,0,1,0,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0) means
the atomic configuration with silver replaced at sites 3, 6, 12, and 13 in
Fig. 1. Details of the random-forests regression and genetic algorithm are
given below.

2.1. Random-forests regression

The random-forests regression [24] is a kind of ensemble learning
based on a regression tree and bagging. Fig. 2 is the schematic diagram
of the random-forests regression. A random-forest consists of plural
regression trees constructed from the bootstrap-sampled data, which is
obtained by the random sampling from all training data allowing
duplication. In the random-forests method, predicted values are the
averages of the output from each regression tree. Random forests have
two parameters in this study, the number of regression trees and the
maximum depth of each tree. Larger and deeper forests lead to the
prediction accuracy, but overfitting can occur. Furthermore, we chan-
ged the size of training data to 0.1%, 0.5%, 1.0%, and 2.0% of all
137,979 data, which equals the number of the atomic configurations.
The scikit-learn package [28] for Python was used to perform the
random-forests regression analysis.

2.2. Genetic algorithm

A genetic algorithm is a stochastic search technique, which imitates
the procedure of evolution. In recent years, the genetic algorithm has
been used for some time-consuming problems in materials science
[29–31]. The strategy of this algorithm for segregation behavior is
shown in Fig. 3. In Fig. 3(a), the first population is generated by
randomly constructing atomic configurations with different silver
segregations, which are hereafter called “individuals”. The segregation
energy is calculated for each individual. The populations have 10, 20,
50, 100, and 200 individuals. The operations of selection, crossover,
and mutation are then implemented in succession. Selection, illu-

Fig. 1. Schematic of the supercells including a Σ5[001]/(210) grain boundary of copper.
Gray and black filled circles are copper atoms in bulk and grain-boundary regions,
respectively. Twenty sites are numbered within the grain-boundary region.

Fig. 2. Schematic diagram of the random forests regression.
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