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a b s t r a c t

Second-harmonic generation (SHG) coefficients in asymmetrical semi-exponential quantum wells
(ASEQW) are studied theoretically. The eigenfunctions and the energy eigenvalues are obtained by
solving Schrödinger equation within the framework of effective mass approximation. In addition, the
analytic expression of SHG coefficients is acquired by using compact-density-matrix approach and
iterative method. The results show that both s and U0, which are parameters of the bound potential in
the growth direction of ASEQW, have great influences on the magnitude and the resonant frequencies of
SHG coefficients.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Thanks to the rapid progress in semiconductor growth techni-
ques in recent years, it is possible to produce low-dimensional
semiconductor structures such as quantum wells, quantum wires,
quantum dots and superlattices. It is well known that the decreas-
ing dimensionality enhances the quantum confinement of carriers
and results in discrete energy levels. Consequently, the confine-
ment of carriers in low-dimensional semiconductor structures
brings out novel electronic and optical properties of great interest.
Therefore, it is meaningful to study the nonlinear optical proper-
ties in low-dimensional semiconductor structures.

In order to enhance second order nonlinear optical properties in
low-dimensional semiconductor structures, researchers have
brought forward and investigated many asymmetric structures such
as asymmetrical semi-parabolic quantum wells, asymmetric coupled
quantum wells and asymmetrical semi-exponential quantum wells
[1–6]. In 2005 Zhang and Guo studied polaron effects on the third-
order nonlinear optical susceptibility in asymmetrical semi-parabolic
quantum wells [1]. In 2009, Wang et al. researched optical rectifica-
tion in the asymmetric coupled quantum wells [2]. In 2012, Liu et al.
investigated linear and nonlinear intersubband optical absorption
and refractive index change in asymmetrical semi-exponential quan-
tum wells [3]. Among the second nonlinear optical properties many
attentions are paid to second-harmonic generation (SHG) coeffi-
cients. For instance, in 1996, Guo and Chen investigated SHG
coefficients in quantum wells within electric field, and they found
that SHG coefficients are influenced by both the well width and the
strength of the applied electric field, in addition to the fact that the

SHG coefficients enhance when the polaron effect is taken into
account [4]. In 2009, Chen et al. studied the SHG coefficients in
asymmetric double triangular quantum wells and concluded that
sharper peaks of the SHG coefficients can be obtained, when an
appropriate electric field is applied to the asymmetric double
triangular quantum wells because of the double-resonant enhance-
ment [5]. In 2010, Shao et al. discussed the SHG coefficients in cubical
quantum dots with applied electric field, and they showed that the
SHG coefficients are not monotonic functions neither of the length of
the cubical quantum dot nor the applied electric field, but larger SHG
coefficients can be acquired by selecting proper length of the cubical
quantum dot and strength of electric field [6].

In this paper, we theoretically discuss the SHG coefficients in
asymmetrical semi-exponential quantum wells (ASEQW). We orga-
nize the paper as follows. In Section 2, the eigenfunctions and energy
eigenvalues are acquired by solving Schrödinger equation. We obtain
the analytical expression of the SHG coefficients using the compact-
density-matrix approach and iterative method. In Section 3, we
present numerical results and some discussions. Finally, a brief
conclusion is exhibited in Section 4.

2. Theory

2.1. Energy eigenvalues and eigenfunctions

In our research we consider the case that an electron is
confined in ASEQW. The expression of the Hamiltonian of the
system can be given as follows when the framework of effective
mass approximation is taken into consideration.

H¼ � ℏ2

2mn

∂2

∂x2
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where

UðzÞ ¼ U0ðez=s�1Þ zZ0
1 zo0:

(
ð2Þ

In the equations above z denotes the growth direction of the
quantum well, ℏ represents Planck constant, mn is the effective
mass of electron in conduction band, and both U0 and s are
parameters which are determined by the property of the ASQW.
Moreover, the parameters U0 and s have great influences on the
bound potential U. The influences are exhibited in Figs. 1 and 2.
From Fig. 1 it can be found that when s is same, the value of bound
potential increases with the augment of U0 at a same point of the
coordinate axis z. In contrast, we can observe from Fig. 2 that
when U0 remains unchanged, the magnitude of the bound poten-
tial decreases with increasing s.

We suppose that the solution of Schrödinger equation is ψn;kðrÞ
and substitute the solution into the Schrödinger equation and then
we can have the following equation:

Hψn;kðrÞ ¼ ɛn;kψn;kðrÞ; ð3Þ
where ɛn;k is the energy eigenvalue. With the method of separa-
tion of variables the solution of the Schrödinger equation can be
written as

ψn;kðrÞ ¼ϕnðzÞucðrÞeik J �r J ; ð4Þ

and the energy eigenvalues have the following form:

ɛn;k ¼ Enþ
ℏ2

2mn
k2
9 ; ð5Þ

where k J and r J denote the wave vector and coordinate in the x–y
plane respectively. uc(r) is the periodic part of the Bloch function in
the conduction band at k¼ 0. ϕnðzÞ is the eigenfunction and En is
the energy eigenvalue in the growth direction of the ASQW. The
Schrödinger equation of the z direction is

HzϕnðzÞ ¼ EnϕnðzÞ; ð6Þ
where Hz represents the z part of the Hamiltonian H which can be
expressed as

Hz ¼ � ℏ2

2mn

∂2

∂z2
þUðzÞ: ð7Þ

In order to solve Eq. (6), we assume:

a2 ¼ 8mnU0s2

ℏ2 ; b¼ 8mnðEnþU0Þs2
ℏ2 ; ξ¼ aez=2s: ð8Þ

With the above assumption the Schrödinger equation of the z
direction can be rewritten as

ξ2
d2ϕnðξÞ
dξ2

þξ
dϕnðξÞ
dξ

�ðυ2þξ2ÞϕnðξÞ ¼ 0; ð9Þ

where υ¼ i
ffiffiffi
b

p
. The above equation is a modified Bessel equation

whose solution can be acquired with the same method in Ref. [10].
Its solution is

ϕnðξÞ ¼ AKυðξÞþBIυðξÞ; ð10Þ
where A and B are arbitrary constants. Because IυðξÞ increases
exponentially when ξ multiplies toward infinity, IυðξÞ cannot
satisfy boundary conditions. Therefore, B must be 0. As a result,
Eq. (10) can be simplified as

ϕnðzÞ ¼ AKi
ffiffi
b

p ðaez=2sÞ: ð11Þ

We can obtain the value of arbitrary constant A when considering
normalized condition. And the energy eigenvalues En can be solved
with numerical method [3].

2.2. Second harmonic generation coefficients

In this section, the second-harmonic generation coefficients are
acquired by using the compact density matrix method and the
iterative procedure. It is supposed that an electromagnetic field is
applied to the system for excitation. The field vector of the applied
electromagnetic field is

EðtÞ ¼ E0 cos ðωtÞ ¼ ~E expð� iωtÞþ ~E expðiωtÞ; ð12Þ
where ω is the frequency of the electromagnetic field applied to
the system whose polarization vector is normal to the ASEQW.
Then the evolution of the density matrix operator ρ obeys the
following Liouville quantum equation [7,11]:

∂ρij

∂t
¼ 1

iℏ
½H0�ezEðtÞ;ρ�ij�Γijðρ�ρð0ÞÞij; ð13Þ

where H0 is the Hamiltonian of the system with the application of
electromagnetic field E

!ðtÞ, ρð0Þ is the unperturbed density matrix,
and Γij is the phenomenological relaxation rate whose generation
is attributed to the interactions of the electron–phonon and
electron–electron and other collision processes. In our research
we select Γij ¼Γ0 ¼ 1=T0 when ia j for simplification. To solve Eq.
(13) we can make use of iterative method [11],

ρðtÞ ¼∑
n
ρðnÞðtÞ; ð14Þ

Fig. 1. The bound potential as function of z for two different values of s, s¼ 10 nm
and s¼ 10:2 nm.

Fig. 2. The bound potential as function of z for two different values of U0,
U0 ¼ 10 meV and U0 ¼ 20 meV.
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