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a b s t r a c t

The classical heat equation is characterized both by the instantaneous propagation of a physical

interaction and by the lack of a particle that carries the heat. Metals have a particular feature: their

atoms form a lattice with electrons traveling through the solid. This paper provides a conduction heat

model for metals. The model replaces atoms by potential barrier and assigns the heat transport to

electrons and, in some cases, photons. To emulate the transitory solution of Schrödinger’s equation, the

potential barrier is fragmented in others so that, the electron is losing energy packets while interacting

with the sub-barriers. With this approach, the energy distribution is obtained for electrons and, in

addition, it is derived a velocity expression for the heat spread through a metal. Last but not least, the

classical solution of the heat equation is obtained but now the electron energy limits the heat diffusion

avoiding the infinite range of the classical solution.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Since the 19th century, many efforts have been made to
explain a wave behavior for heat in different ways and, conse-
quently, to associate some speed which the heat propagation (for
an comprehensive chronological revision [1,2]). One general
classification of those heat theories could be made from the
differential equation order: parabolic heat equations, hyperbolic
heat equations and other theories (namely two temperature
model and a relativistic heat equation).

First steps relating thermal flux q and temperature gradient
rT were taken by means of Fourier’s law. To consider the time
variation of energy the classical parabolic heat equation arises,
describing an energetic balance between internal energy, heat
source and thermal diffusion.
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where r, cp and k are the density, the specific heat and the
thermal conductivity of material, t is the time and S describes the
source energy per unit of time and volume. The special behavior
of this equation represents a paradox in the present: a physical
phenomenon spreading with infinity velocity. To avoid this
anomaly, some authors have proposed to use a modified Fourier’s
law [1,2]
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here t is the relaxation time; the inverse of t is the frequency to
activate the wave behavior of heat. The propagation speed C

would relate t and thermal diffusivity a¼ k=ðrcÞ through the
equation

C ¼

ffiffiffi
a
t

r
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If Eq. (2) is inserted in the classical parabolic equation, it becomes
an hyperbolic heat equation. However, at very short times ðtCtÞ,
the balance of energy is destroyed, thus violating the fundamental
law of energy conservation [3,4]. Moreover, this theory does not
identify the particles carrying the heat, another important skill in
contemporary physics.

The third element in the classification is not a unique theory;
on the contrary, it groups models with some special character-
istics. In this paper, those having an interest are two temperatures
and relativistic theories. The behavior of laser heating of metals is
explained in Refs. [5–7]. From a point of view of interaction
radiation-atom, the source S deposits electromagnetic energy on
electrons, Eq. (4), that spend a finite time t – as was the case
before, a relaxation time – to change their states, Ref. (5). After
this, an energy exchange between electrons and the lattice is
generated, Ref. (6). This process lasts until the thermal equili-
brium between electrons and lattice is reached: this interval
receives the name of thermalization time. Last but not least,
energy is propagated through the material. These three steps
define the two temperature model. The equations are
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where G is the electron–phonon coupling factor and the sub-
scripts e and l are assigned to electron and lattice characteristics,
i.e. cl represents the heat capacity of the lattice. Together,
Eqs. (4) and (5) form a hyperbolic model for electrons with a
heat propagation velocity similar to Eq. (3). However, Eq. (6)
predicts an infinity speed for phonons. Therefore, this theory
combines both hyperbolic and parabolic equations, but only
predicts a finite heat propagation speed for times close to
relaxation time of electrons; after this interval, the heat propaga-
tion becomes infinite once again.

The authors Ali and Zhang [4,8] advance a relativistic heat
theory. Their key idea is a weaker interpretation of principle of
relativity: any field or matter has its own limiting speed, for
example the light velocity for electromagnetic fields. Then, for
heat conduction, the maximum speed at which the information
can be transmitted would be the phonon velocity C through the
material. In this four-dimensional space, the gradient operator
would take the shape

&¼
�i
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is the imaginary constant and o is a time unit
vector in Minkowski algebra. From the relativistic flux vector

q¼�k&T ¼
ik
C
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the four-dimensional energy balance becomes a hyperbolic heat
equation.
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According to the authors, the advantages of this formulation over
the hyperbolic equations mentioned above are first, the fact of
that the energy is conserved and, second unlike the models above
where C was only related to electrons, this theory takes into
account the dependence of heat speed on thermal properties
varying with temperature, on the presence of fields, on geome-
trical behavior, etc. However, there are two disadvantages in this
theory: it does not give any expression for C and, furthermore, it
does not set which particle transports the heat.

Metals have a particular feature: their atoms form a regular
lattice. This elementary idealization allows to develop a model
which consists of electrons moving freely until they interact with
the lattice. The aim of this paper is to provide a conduction heat

model from this idealization. This theory should explain what
particles are responsible for heat transfer, how fast the heat
spreads and the physical process to produce heat.

2. Quantum model of heat

Quantum electrodynamics is based on the interaction of
charged particles and fields by means of the exchange of photons.
We will now begin a journey through metals where we are going
to find only photons and electrons. Suppose photons reaching the
atoms of some kind of matter. Let us only consider those photons
with energy between infrared and ultraviolet range, i.e. thermal
photons. Since it is possible that the substance be passed through
by some photons, let us only deal with those matter that interacts
with thermal photons, i.e. non-transparent materials.

A theory about thermal conduction should consider both
conventional and new heat sources—ovens, stoves, natural light,
lasers, etc.; therefore, the energy range should include from
infrared to partially ultraviolet photons: ½1:242 �10�3, C25� eV,
approximately. With this range in mind, the oscillation of an iron
atom (rest mass 52 GeV, approx.) as a consequence of the collision
with a thermal photon would be extremely improbable. The
smaller first ionization potential in the periodic table belongs to
francium, 3.83 eV, and the larger is for helium, 24.587 eV. These
energies limit the chance of interactions so the Compton effect is
prevented and the photoelectric effect should be considered only
in certain circumstances. Nevertheless, the photoelectric effect
could not justify the interaction of an infrared photon with all
materials. A satisfactory explication lies in the fact that the
electrical fields of the photon and electron interact with each
other [9]. Thus, a photon passing close enough to an atom could
be represented as a wave interacting with a potential barrier.
Fig. 1 shows this event: at t¼0 the photon g0 reaches the
potential barrier V0 and simultaneously another photon gr is
reflected, after a time t a third photon g and an electron e� arises
from the barrier (on those situations where this is possible). At
this point, some clarifications are needed to properly understand,
Fig. 1:

� The energy primacy of gr , g or e� allows to sort the materials in
reflective, transparent and absorbent substances. For example,
the matter is reflective when the energy of gr is greater than
the sum of the other two. In the case of Fig. 1, it represents one
of the three possible situations.
� The number of arising photons and/or electrons depends on

the physical involved laws; therefore, g and e� represent the
photons and electrons that appear after a time t. However, the
time t is not necessarily the same time for all the photons and
electrons, i.e. gi or e�i emerges after a lapse ti.
� The real geometry of the barrier would be smoother than Fig. 1

and its height would also vary over time, for instance when an
electron is emitted. Therefore, the model described in Fig. 1
gives a very rough idea of the reality, but it will help to explain
some questions.

Continuing with this idea, a solid metal could be modeled by
means of a periodic potential. Each atom or molecule will be
replaced by a potential barrier, a in width, which is placed at
distance b from another neighboring barriers, Fig. 2. The ensemble
will form a one-dimensional grid with a lattice parameter aþb.

Let us see what happens when a photon g0 hits this grid, now
metal. First, the electrical field of the photon interacts with the
barrier and, immediately, a reflected photon appears. The remain-
ing energy will be absorbed during the time t – delay time for

Fig. 1. A causal representation of the photon–matter interaction. Once a photon g0

is absorbed by an potential barrier at t¼0, another photon gr will be simulta-

neously reflected. A third photon g and an electron e� will be generated after a

time t.
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