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a b s t r a c t

The isotropy of different numerical simulations of fiber reinforced elastomers has been explored by
explicitly applying stretch in different loading directions, in models with representative volume elements
(RVEs) spanning a wide range of fiber volume fractions and system sizes. The results show that the
homogenized response is not the same for all loading directions, and that the corresponding dependance
takes the form of a sine. The anisotropy decreases with the RVE size, and so it can be used to asses if the
scales can be separated in a given model. Considering the average response over all loading directions
greatly reduces the variation between different RVEs, which can be used to improve the accuracy of the
simulations in a way that is significantly more efficient than increasing the size of the RVE. The simu-
lations have also shown a good correlation between the isotropy of each representative volume element
at low and high values of the applied stretch. The result of linear simulations can therefore be used as an
efficient indication of the anisotropy expected at high deformations.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Fiber-reinforced composites are widely used in industry due to
their high stiffness-to-weight and strength-to-weight ratio. In
addition to their application as structural elements, in recent
years new elastomer-based composites have been proposed in
systems that exploit the mechanics of large deformations, with
examples ranging from strain sensing [32] to deployable struc-
tures [18] and shape memory composites [7]. This new set of
constituent materials, loading conditions and application re-
quirements have made necessary the development of new tools to
predict the mechanical response of fiber composites in the
nonlinear regime [27].

A set of such tools are analytical homogenization techniques.
Following the pioneering work of Ponte Casta~neda [26], several
studies have provided increasingly refined homogenization models
for the nonlinear behavior of fiber-composites [3,4,21,1,20]. How-
ever, this is a very complicated problem, where the possibility of
obtaining simple closed form solutions is limited to a certain set of
constituents and microstructure geometries. In addition, such
models can only provide the homogenized response, and are un-
able to study the microscopic strain and stress fields.

The other option is numerical-based homogenization [22],
which is widely used in the study of both linear and nonlinear
composites [10,13,2,31]. This approach is based on the existence of
a representative volume element (RVE) in which the microstruc-
ture and size are such that its overall response is the same as that of
the real material. This is called separation of scales between the
microscopic and macroscopic scales, and is only strictly true in the
case in which the size of the RVE is mathematically infinite, that is,
extremely large compared to the fiber dimension. The main prob-
lem is, therefore, establishing the minimum element size that
provides a sufficiently accurate prediction of the response of the
ideal composite, as well as bounding the associated error [28].
Several authors have provided estimates for this critical size in the
case of composites with linearly elastic properties [5,11,14]. In the
case of nonlinear composites, the critical size of the RVE depends
not only on the source of nonlinearity, but also on the criteria used
to establish if the different realizations of the RVE, with increasing
size, have converged to the behavior of the ideal, infinite composite
[15,30,25,8,9,23,12], the most common being the convergence of
the homogenized mechanical response, that is, the macroscopic
average stiffness, as the model size increases.

Another possible criteria is the requirement that, since a com-
posite of infinite size and randommicrostructure must be isotropic,
the response of the numerical model should be isotropic too. De-
viations from this ideal behavior are therefore a numerical artifact

E-mail address: flopezj@mit.edu.

Contents lists available at ScienceDirect

Composites Part B

journal homepage: www.elsevier .com/locate/compositesb

http://dx.doi.org/10.1016/j.compositesb.2015.10.014
1359-8368/© 2015 Elsevier Ltd. All rights reserved.

Composites Part B 87 (2016) 33e39

mailto:flopezj@mit.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compositesb.2015.10.014&domain=pdf
www.sciencedirect.com/science/journal/13598368
www.elsevier.com/locate/compositesb
http://dx.doi.org/10.1016/j.compositesb.2015.10.014
http://dx.doi.org/10.1016/j.compositesb.2015.10.014
http://dx.doi.org/10.1016/j.compositesb.2015.10.014


due to the finite size of the model. The RVE size is considered to be
sufficiently large, then, when its mechanical response is close to
isotropic. This is commonly assessed by looking at the coaxility of
the strain and stress tensors [19]. However, and to the author's
knowledge, there are no published studies in which the isotropy is
explicitly explored by systematically varying the loading direction.
This provides a direct measure of the RVE anisotropy, that can be
explored as a function of its size and fiber volume fraction. The fact
that the level of isotropy of a given microstructure might change as
the applied loading increases, as it happens with nonlinear com-
posites, has also seldom been addressed in the existing literature.

The goal of this work is to study the isotropy associated to the
RVE size at lowand high strains, as well as the relationship between
isotropy and convergence of the homogenized response as the size
of the RVE increases. We will focus on two-dimensional RVEs, with
parallel fibers, that are transversely isotropic in the plane perpen-
dicular to the fiber direction. There are two main reasons to choose
this simplified geometry. First, it is a particularly interesting case
since the mechanical properties are dominated by the matrix, and
the evolution of the fiber arrangement as the loading increases
significantly affects the nonlinear response. Second, we will make
use of the fact that the response of an incompressible material
under plane strain can be defined with only two parameters,
namely the principal stretch, l, and the angle of the corresponding
principal direction, q, in order to explicitly explore the isotropy of
the RVEs: for all realizations of our model, the same value of l will
be applied at several values of q, which provides the homogenized
stiffness as a function of the loading direction. The numerical model
will be presented in Section 2. The results for small and large strain
loading will be presented in Section 3, followed by a summary and
discussion of the main findings in Section 4.

2. Computational model

Numerical homogenization is performed through a series of
finite element simulations with the commercial package Abaqus.
The RVEs are loaded applying a macroscopic deformation gradient
F through a combination of dummy nodes and periodic boundary
conditions. The total strain energy of each RVE is used to calculate a
homogenized strain energy density W:

W ¼

Z
Af

Wf dAf þ
Z
Am

WmdAm

Af þ Am
(1)

where Wi and Ai are the strain energy density and area of either
fiber, f, andmatrix,m. The rest of this section provides details on the
parameters, microstructure and boundary conditions of the model.
A very similar model has been verified with experimental results of
carbon fiber composites with a soft silicone matrix [17].

2.1. Geometrical and material parameters

We consider an idealized composite with cylindrical fibers of
radius r, extending perfectly parallel in the X1 direction and with a
random distribution within the X2�X3 plane. The composite is
therefore transversely isotropic, i.e. isotropic in the plane perpen-
dicular to the fiber direction. The fiber volume fraction is Vf. In the
simulations presented here we assume plane strain to reduce the
geometry to a square two-dimensional RVE of side length
L2 ¼ L3 ¼ dr, with Nf ¼ Vfd

2/p fibers. Assuming generalized plane
strain yields the same results, since the extreme stiffness of the
fibers with respect to the matrix prevents any stretching in the X1
direction. A schematic of the model is shown in Fig. 1.

Both fiber and matrix are modeled as incompressible hypere-
lastic Neo-Hookean materials, with strain energy density Wi ¼ mi/
2(I1�3), where mi is the linear shear stiffness of the component i and
I1 is the first invariant of the Cauchy-Green deformation gradient
C ¼ F0F, defined in function of the principal stretches li as
I1 ¼ P3

i¼1l
2
i [24]. The bonding between both components is

assumed to be perfect. The ratio of stiffness between fibers and
matrix is taken so that the fibers behave as rigid, mf/mm ¼ 10000.
Linear quadrilateral elements CPE4H are used for both components,
with hybrid formulation to account for incompressibility. An
average element size of 0.1r has been chosen after a parametric
mesh size study.

2.2. Boundary conditions and loading

Periodic boundary conditions are applied in all faces of the RVE
using the command EQUATION in Abaqus. This requires the mesh
to be identical in all opposite faces of the RVE. The conditions can be
summarized as:

uðL2;X3Þ � uð0;X3Þ ¼ u
2

uðX2; L3Þ � uðX2;0Þ ¼ u
3 (2)

where u
i
j ¼ FijLj, Lj is the length of the RVE in the j-th direction, and

F is the applied deformation gradient, Fij ¼ vxi=vXj. Using the
spectral theorem, the Cauchy-Green deformation gradient can be
expressed as a function of the principal stretches li and principal
directions ni as

C ¼
X3
1

lini5ni (3)

The condition of plain strain imposes l1 ¼ 1, n1 ¼ [1 0 0]. The
additional restraint due to incompressibility implies that all
possible deformations are defined by a single principal stretch,
l2 ¼ 1/l3 ¼ l, and a direction q, n1 ¼ ½0 cosq sinq � and
n2 ¼ ½0 �sinq cosq �. Equation (3) is then used to calculate C, and
the deformation gradient is obtained solving the equation F0F ¼ C.

The components of u
i
can therefore be obtained from the desired

principal stretch and direction, and imposed to the model through
auxiliary dummy nodes. However, imposing the four displacements
often leads to numerical errors, since even small rounding errors
result in a violation of the incompressibility condition. In practice,
this is resolved by allowing free expansion in the X3 direction.
Analysis of the results show that the resultant displacement is
basically equal to F33L3, as expected.

2.3. Fiber arrangement

For a given set of values of d and Vf, the microstructure is fully
described by the position of the center of the fibers within the RVE.
These are obtained through a random sequential adsorption algo-
rithm [6]. This is is a hard-core process, i.e. a Poisson process in
which a limitation on theminimum distance between the centers is
introduced: the positions are obtained randomly, and rejected if the
distance to any of the already allocated fibers is less than a given
limit. In this work, an unless noted otherwise, the minimum dis-
tance adopted is 1.1 times the diameter. Additionally, a fiber is also
rejected if the distance between its center to the edge of the RVE is
in the [0.9r,1.1r] interval. The goal of both conditions is creating a
geometry that can be easily meshed.

It is possible that a given fiber distribution reaches a jammed
configuration [29], in which no new fibers can be added without
violating the non-overlap restriction. For this reason, if after 1000
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