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a b s t r a c t

Temperature-frequency-dependent dynamic mechanical properties of epoxy resin and glass/epoxy
composites were studied at different loading modes by dynamic mechanical analysis. An improved
temperature-dependent storage modulus model was developed to describe the storage modulus of the
epoxy resin and glass/epoxy composites. A new and simple loss modulus model including two specific
physical parameters was also developed. In addition, a model that can describe the temperature-
frequency-dependent mechanical properties was established by combining the storage modulus
model or loss modulus model with the Arrhenius equation. All of the model predictions showed very
good agreements with the experimental results.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Polymer matrix composites (PMCs) are widely used in aero-
space, automotive, and civil engineering structures due to their
outstanding mechanical properties [1]. One disadvantage of these
materials is that their stiffness and strength decrease significantly
in the range of the glass transition temperature [2]. To design PMCs,
determining the relationship between temperature and mechani-
cal properties in the full range of transition temperatures is
important.

Many researchers have investigated the relationship between
temperature and dynamic storage modulus [3e10]. Havriliak and
Negami [3] modeled the dynamic mechanical behaviors of poly-
mers in the frequency domain (named as HN model). Some studies
[4,5] used the HN model to describe the temperature-dependent
storage modulus by introducing an Arrhenius-type relationship
between relaxation time and temperature. Bai et al. [6] modeled
the temperature-dependent modulus using an Arrhenius-type
equation. Mahieux and Reifsnider [7,8] suggested Weibull-type
functions to describe the change in modulus over the full range
of transition temperatures. Gibson et al. [9] presented a semi-

empirical model that could describe the properties over the tran-
sition from the glass to rubber state. Recently, Guo et al. [10] pro-
posed a simple temperature-dependent model that could be used
to describe dynamic storage modulus and static flexural modulus.
Among these models, some employing complicated expressions
[3e6] could predict the dynamic storage modulus in the full tem-
perature range, while others with simple forms [7e10] showed
excellent agreement with experimental data for the glass transition
region and rubber state.

Some researchers have also studied changes in the loss modulus
of a polymer with changing temperature [4,11e13]. Szabo and
Keough [4] used the HN model and Arrhenius relationship to
describe the temperature-dependent loss modulus at a fixed fre-
quency. Some researchers [12,13] studied the dynamic mechanical
properties of polymers or composites by the semi-empirical FK
model [11]. Nevertheless, these two models predict a vanishing
value of loss modulus in the glass and rubber states, resulting in
differences between the model predictions and experimental re-
sults in the two states.

In this paper, new models were developed to describe the
progressive changes in the storage modulus and loss modulus of
epoxy resin and glass/epoxy composites under elevated tempera-
tures at a fixed frequency. By combining them with the Arrhenius
equation, the new models were extended to describe the
temperature-frequency- dependent dynamic modulus. The* Corresponding author. Tel.: þ86 21 56331451; fax: þ86 21 36033287.
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theoretical results were compared with corresponding experi-
mental results.

2. Theory of dynamic mechanical analysis

2.1. Basic principles of dynamic mechanical analysis

Dynamic mechanical analysis (DMA) [14] can be simply
described as applying an oscillating force to a sample and analyzing
the material's response to that force. The modulus measured in
DMA is, however, not exactly the same as the Young's modulus of
the classic stressestrain curve shown in Fig. 1. Young's modulus is
the slope of a stressestrain curve in the initial linear region. In
DMA, the complex modulus (E*), storage modulus (E0), and loss
modulus (E00) are calculated from the material response to the sine
wave shown in Fig. 2.

The complex modulus E* is the ratio of the stress amplitude to
the strain amplitude and represents the stiffness of the material:

E* ¼ s

ε

¼ E
0 þ E

00
i: (1)

The real part of the complex modulus is the storage modulus E0

which is determined by equation (2):

E
0 ¼ ��E*��$cos d (2)

The loss modulus E00 which is the imaginary part of the complex
modulus is defined as being proportional to the energy dissipated
during one loading cycle:

E
00 ¼ ��E*��$sin d (3)

The phase angle d is the phase difference between the dynamic
stress and the dynamic strain in a viscoelastic material subjected to
a sinusoidal oscillation. The loss factor tand is the ratio of loss
modulus to storage modulus expressed in equation (4):

tan d ¼ E
00

E0 : (4)

2.2. Transition regions

Fig. 3 shows the typical variations of dynamic mechanical
properties of a polymer with temperatures. As the temperature
of a polymer is raised, it passes from a glass state to a rubber
state. The transition from the glass to the rubber state is called
glass transition or a transition which is accompanied by a rapid
fall in storage modulus, and a peak in loss modulus and loss
factor of the material. The glass transition is associated with
large-scale motions of the polymer chains [15]. When the

temperature continues to go down in the glass state, another
peak appears in loss modulus and loss factor [16,17]. This tran-
sition is called b transition which is thought to be due to small
scale motions of side chains [18]. Blow the b transition, a peak in
loss modulus and loss factor at even lower temperatures can be
found [19] and this is often referred to as the g transition which
is due to local motions of polymer segments involving at least
four carbon atoms [20].

2.3. Methods of determining the glass transition temperature

Fig. 4 shows the different methods for determining Tg. The
use of the storage modulus step to determine Tg is based on the
standardized DSC method [21] and involves ascertaining the
onset, end, and midpoint temperatures. Tangents are applied to
the sections of the curve above and below the glass transition
step. An inflectional tangent is applied to the step intersections
with both these tangents at the extrapolated onset temperature
Teig and the extrapolated end temperature Tefg. The midpoint
temperature Tmg is determined from the half-step height. Tg may
also be defined as the temperature of the maximum loss
modulus (E

00
max) or maximum loss factor (tandmax) [22]. These

curves are easier to evaluate than the storage modulus step
curves.

Teig is the lowest, while Tg (tandmax) is the highest among these
Tgs demonstrated in Fig. 4. Thus in this paper, we focus on Teig, Tmg,
Tg (E

00
max), and Tg (tandmax), which represent the beginning (Teig),

middle (Tmg and Tg (E
00
max)), and the end (Tg (tandmax)) of the glass

transition region.Fig. 1. Stressestrain curve.

Fig. 2. Sinusoidal oscillation and response of a linear-viscoelastic material.

Fig. 3. Typical variations of dynamic mechanical properties with temperatures.
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