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a b s t r a c t

Simply supported, rectangular, composite plates subjected to in-plane compressive load have been
investigated for ultimate strength. An efficient, semi-analytical method has been established based on
large deflection theory and first order shear deformation theory. After damage initiation, linear degrada-
tion of the material properties has been applied to the affected region of a failed ply. Two different
displacement fields have been examined for their influence on the strength predictions. The approach
is validated against earlier advanced finite element calculations, and can be readily applied in specific
design situations or to generate parametric design curves.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Composite plates are used as structural components in many
large structures, such as naval ships and wind turbine blades. In
design of composite structures, buckling analysis is very often con-
fined to estimation of elastic critical loads without taking account
of geometric imperfections or material degradation. For many
plates, the elastic critical loads give very conservative solutions,
which in turn prevent the full utilisation of the material, while
for others the neglect of imperfections can lead to unsafe estimates
of strength. In contrast to composite plates, for plates made of
steel, design strength curves that take account of slenderness and
geometric imperfections have been established based on extensive
studies. At present, ultimate strength analysis of composite struc-
tures can be performed using nonlinear finite element (FE) meth-
ods. However, such analyses are time consuming to perform and
impractical for most design purposes. For strength predictions of
stiffened, thin steel plates under in-plane loading, Brubak et al.
[1–3] have developed several simplified semi-analytical methods.

The present paper reports on the latest developments in a study
that aims to extend these efficient methods to fibre-reinforced
composite plates, taking account of (i) appropriate failure and deg-
radation models for composites, (ii) initial geometric imperfections,

(iii) out-of-plane shear deformations and (iv) post-buckling
deformations. A series of simplified models based on small deflection
theory, presented in [4], showed that neglect of post-buckling behav-
iour makes the ultimate strength predictions very conservative,
especially for thin plates. Several models based on large deflection
theory, developed in [5] and reported in more detail in [6], give
significant improvements compared to those in [4]. However, the
models proposed in [5] were implemented with instantaneous
material degradation once a given failure criterion was reached,
and this resulted in significant underestimation of the strength
for some of the cases. The models in the present paper adopt a linear
degradation of the material properties. The degradation approach,
in which the material stiffness reduction is limited to the affected
regions of a failed ply, is developed in combination with the Hashin
and Rotem failure criterion [7]. To validate the method, the results
are compared with the FE analyses conducted by Misirlis using
ABAQUS, reported by Hayman et al. [8].

2. Boundary conditions and displacement fields

A rectangular plate is considered, with dimensions a � b (Fig. 1)
and an initial out-of-plane deformation winit. The plate is simply
supported on all edges and subjected to a mean compression Nx

in the x-direction. In the analyses, this is achieved by restraining
the edge x = 0 in the x-direction and applying a uniform, negative
displacement uc in the x-direction on the edge x = a, all four
edges being held straight. The total out-of-plane deformation is
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wtot = winit + w. Two alternative displacement fields, designated
DF1 and DF2, are assumed. In DF1, each deformation component
is assumed in the form of a truncated double Fourier series [3,9],
the in-plane displacements having in addition a linear component
[3,10]:
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The symbols u0 and v0 represent the mid-plane displacements in
the x- and y-directions, respectively. The rotations of a transverse
normal about axes parallel to the y and x axes are denoted by /x

and /y, respectively. The coefficients uc, vc, umn, vmn, xmn, ymn and
wmn are unknowns, wimn are given imperfection amplitudes, and
m, n, M and N are positive integers.

In the alternative displacement field DF2, the in-plane displace-
ment fields, Eqs. (1a) and (1b), are replaced by those used by Reddy
[11] for anti-symmetric angle-ply laminates:
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Note that all four edges are still constrained to remain straight, but
u0 now varies differently along the edges y = 0,b and v0 varies
differently along x = 0,a.

3. Methodology

3.1. Introduction

The semi-analytical method is based on large deflection theory
combined with the first order shear deformation theory. The

load–displacement response is traced by an incremental proce-
dure, where an arc length parameter is used as a propagation
parameter [12]. This method is presented in detail in Yang [6]. A
brief review of the background theory and the methodology are
provided in Sections 3.2 and 3.3.

3.2. Kinematics

For a plate with an out-of-plane imperfection winit and addi-
tional out-of-plane displacement w, the nonlinear strains become
[11,13]:
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Here x and y are the in-plane coordinates and z is the distance from
the middle plane of the plate. The terms with the super index ‘‘0’’
denote the mid-plane membrane strains, while j are the
curvatures.

3.3. Arc length method

Using the Rayleigh–Ritz method and denoting the total poten-
tial energy as P, the incremental form of the stationary potential
energy condition for equilibrium is d _P ¼ 0, and thus
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Here, ki represents the displacement and rotation amplitudes, while
K is the load parameter. A dot above a symbol means differentiation
with respect to an arc length parameter g. Further, Cij is a general-
ised, incremental stiffness matrix and Fi

_K is a generalised, incre-
mental load vector, where i indicates the row number and j the
column number in a matrix. The additional equation required to
solve the problem is given by relating the arc length increment
parameter Dg to the load increment DK and the incremental dis-
placement amplitude Dki:
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where t is the plate thickness.
In the propagation process, _Ks and _ks

j can be determined from
Eqs. (4) and (5) at stage s. The solutions at the next stage (s + 1)
are then obtained by the first order Taylor series expansion:

ksþ1
j ¼ ks

j þ _ks
j Dg ð6aÞ

Ksþ1 ¼ Ks þ _KsDg ð6bÞFig. 1. Plate geometry and load condition. The broken lines and the numbers are
explained in Section 5.
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