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a b s t r a c t

A detailed investigation of the weight of each non linear term of the Green–Lagrange strain displacement
equation is presented, with reference to the buckling of orthotropic, both flat and prismatic, Mindlin
plates. Usually in the literature, in buckling analysis only the second order terms related to the out-of-
plane displacement are considered. Such heuristic simplification, known as von Kármán hypothesis,
starts by the consideration that the buckling mode of a flat plate is described by dominant out-of-plane
displacement and disregards the non-linear terms of the Green–Lagrange strain tensor depending on the
in plane displacement components, whose role is confined to first order, say pre-critical, deformation. The
present paper shows that disregarding the non linear terms related to the in-plane strain–displacement is
equivalent to neglect shear induced rotation. In the work, the governing equations are derived using the
principle of strain energy minimum and the differential equations solution is gained by using the general
Levy-type method. The obtained results show that the von Kármán model overestimates the critical load
when, in buckling mode, magnitudes of shear rotation, in-plane and out-of-plane displacements are
comparable.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Structures made of laminated composite materials are increas-
ingly used in many engineering branches, especially when the
weight of the structure is a significant factor to be considered in
the analysis and design of structural members. Nevertheless, such
structures can be affected to a buckling failure, and the growing
number of papers published on the subject show how the defini-
tion of a model able to predict their critical behavior is again con-
sidered an open question. Indeed, starting from the nonlinear
theory of the elasticity, the buckling analysis of elastic structures
requires some kinematical assumptions able to get simplified
structural models, concerning two-dimensional as well as one-
dimensional bodies [1].

The simplest two-dimensional model can be obtained according
to the Kirchhoff–Love hypotheses [2] that, neglecting the effect of
the transverse shear deformation, provides reasonable results for
thin plates [3,4], and shells [5]. However, the Kirchhoff’s theory
generally overestimates the buckling loads of thick plates, for
which the transverse shear becomes effective. The first-order shear
deformation plate theory, proposed by Reissner [6] and Mindlin

[7], relaxes the assumption of normality of the cross-section and
overcomes some of the intrinsic limitations of the Kirchhoff model
[8]. However, due to the impossibility of fulfilling homogeneous
boundary conditions on tractions on the limit planes of the plate,
the Mindlin model is not consistent with respect to the mathemat-
ical theory of elasticity. Several corrections have been proposed in
literature (see, for example [9,10] and, more recently [11–13]),
involving higher-order terms of the Taylor expansion of the
displacements in the thickness coordinate, i.e. assuming quadratic,
cubic or higher variations of surface parallel displacements
through the entire thickness of the laminates to address the
‘‘correct’’ structural behavior. An overview of the algebraic
relationships between the buckling solutions of the classical
plate theory and those of the first-order and third-order shear
deformation plate theories can be found in [14].

Besides the choice of a proper structural model, an actual
solution of the equations governing the buckling phenomenon
require further approximations on the displacement field. The
Finite Element Method (FEM) is the most powerful and most
popular technique for computing accurate solutions of partial
differential equations, since it can be adapted to problems of
great complexity and unusual geometry, and it has been widely
used for analyze the critical behavior of Kirchhoff [15] and
Mindlin [16] plate.
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When structures are prismatic, constituted by flat or curved
plate components rigidly connected along their longitudinal edges
to form arbitrary cross-section profiles, the Finite Strip Method
(FSM) represents a very competitive alternative to the FEM in
terms of accuracy, computational and data preparation time [17].
The Boundary Element Method [18], the Superposition Method
[19], and the Finite Difference Method [20] are numerical alterna-
tive for buckling analysis of both flat and stiffened plates.

Finally, the third aspect to be considered is related to the nonlin-
ear model adopted for predicting the buckling load. In such matter
the von Kármán plate theory is generally accepted within the scien-
tific community. Starting by the heuristic consideration that the
buckling mode of a flat plate is described by dominant out-of-plane
displacements, the von Kármán model discards the non-linear
terms of the Green–Lagrange strain tensor depending on in-plane
displacement components, whose role is confined to first order,
say pre-critical, deformation [21].

In previous works the author demonstrated that such non linear
terms cannot be considered negligible in the stability analysis of
prismatic structures consisting of a series of flat, rectangular iso-
tropic [22] or orthotropic [23] thin plates. In particular, whenever
the plate undergoes to global flexural or flexo-torsional buckling
modes, the buckling deformed shape presents displacement that
does not belong to any local out-of-plane direction, and the von
Kármán model can greatly overestimate the related critical load.

In the present paper, a complete discussion on the influence of
the nonlinear Green–Lagrange strain tensor terms on the buckling
of orthotropic, moderately thick plates is presented. Starting by the
Mindlin hypotheses, the equilibrium equations have been derived
using the principle of strain energy stationarity. The obtained
equations show how, for the Mindlin plate model, the nonlinear
terms associated to the Green–Lagrange strain tensor influence
directly the out-of-plane equations and, as consequence, the von
Kármán hypothesis can be considered adequate only if pure out-
of-plane buckling occurs, namely characterized by both negligible
in-plane displacements and rotations.

In this paper, by means of the Levy-type method [24], a closed
form solution, rigorously exact for plates with two opposite edges
simply supported, has been derived for the ruling equations. In
order to highlight the role of any of the non-linear terms usually
neglected under the von Kármán hypothesis, such solution has
been used to model the critical behavior of both flat and stiffened
plates varying geometry, boundary and load conditions.

2. Buckling of Mindlin plates using Green–Lagrange strain
tensor

Consider a rectangular orthotropic plate of dimensions (a, b),
thickness h, referred to the rectangular coordinate system (O, x,
y, z) indicate in Fig. 1, and subjected to uniform in-plane load in
x and y direction. By using the Mindlin first order shear deforma-
tion plate theory the displacement components of the plate points,
represented by the vector s = [sx sy sz]T, can be represented in terms

of the generalized local displacements (u, v, w) and of the shear
rotations around the in-plane axes, say (ux, uy), of the mid-surface
as follows:

sxðx; y; zÞ ¼ uðx; yÞ � z �uxðx; yÞ
syðx; y; zÞ ¼ vðx; yÞ � z �uyðx; yÞ
szðx; y; zÞ ¼ wðx; yÞ

ð1Þ

The non-linear expressions for the strain components contrib-
uting to the strain energy can be put in the following form:

ex ¼ sx;x þ
1
2

k1s2
x;x þ k2s2

y;x þ k3s2
z;x

� �
ey ¼ sy;y þ

1
2

k1s2
x;y þ k2s2

y;y þ k3s2
z;y

� �
cxy ¼ sx;y þ sy;x þ k1sx;xsx;y þ k2sy;xsy;y þ k3sz;xsz;y

cxz ¼ sx;z þ sz;x þ k1sx;xsx;z þ k2sy;xsy;z þ k3sz;xsz;z

cyz ¼ sy;z þ sz;y þ k1sx;ysx;z þ k2sy;ysy;z þ k3sz;ysz;z

ð2Þ

In Eq. (2), and in the following, comma before subscripts indicates
partial derivative, e.g. si,j is equivalent to @si/@xj, (e, c) represent lon-
gitudinal and shear strain and (k1, k2, k3) are coefficients used to
summarize, within a single formula, several displacement assump-
tions usually encountered in literature. Namely, by imposing
k1 = k2 = 0, k3 = 1 Eq. (2) returns the von Kármán kinematic model
whereas, imposing k1 = k2 = k3 = 1, it provides the Green–Lagrange
strain model. Furthermore, two intermediate models can be consid-
ered by setting k1 = 1 and k2 = 0 or k1 = 0 and k2 = 1 (i.e. isolating the
non linear contribute of one of the in plane displacement compo-
nent derivatives of sx or sy).

By substituting Eq. (1) into Eq. (2), the strain components:

e ¼ eL þ eNL ð3Þ

is obtained in terms of the generalized displacement (u, v, w, ux,
uy), where:

eL ¼

u;x � zux;x

v ;y � zuy;y

u;y þ v ;x � zðux;y þuy;xÞ
w;x �ux

w;y �uy

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð4Þ

collects the linear components of the strain field, and:

eNL ¼
1
2

k1

ðu;x�zux;xÞ
2

ðu;y�zux;yÞ
2

2ðu;x� zux;xÞðu;y� zux;yÞ
2uxðzux;x�u;xÞ
2uxðzux;y�u;yÞ

2
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3
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2
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2
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2
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2uyðzuy;y�v ;yÞ

2
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þ1
2

k3

w2
;x

w2
;y
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0
0

2
6666664
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ð5Þ

the remaining nonlinear terms contained in Eq. (2).
The equilibrium state is thus sought by invoking the principle of

minimum of the strain energy.
The pre-critical kinematical configuration does not have out of

plane displacement components w = ux = uy = 0, whereas the in-
plane components u = u0, v = v0 generate the following pre-critical
stress field r0:
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Fig. 1. Coordinate systems, geometry and applied in-plane loads for the generic ith
plate.
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