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a b s t r a c t

Buckling behaviors of elastoplastic functionally graded material cylindrical shells under combined axial
compression and external pressure are investigated with classical shell theory. The material properties
vary smoothly through the thickness, and a multi-linear hardening elastoplasticity is used in the analysis.
By extending TTO model of functionally graded materials into J2 deformation theory, the elastoplastic
constitutive relation of FGMs is founded. The buckling governing equations are solved by Galerkin
method, and the expression of the critical condition under combine in-plane loads is given. Numerical
results are given through an iterative procedure between the prebuckling state and the critical condition.
Numerical results give the interactive curves of the stability regions and the exact elastoplastic interface
of the materials. It is interesting to find that, material plastic flow is of significant effects on the stability
region, and the effects of the constituent distribution and the elastoplastic material properties are
discussed as well.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Functionally graded materials (FGMs) are ceramic/metallic
composites, with the constituents varying smoothly through the
material thickness which enables the continually changing
material properties as well [1]. This would effectively avoid stress
concentration seen in traditional laminate or fiber-reinforced com-
posites. Currently, FGMs have been widely applied in aerospace
and nuclear industries [2].

As one of the fundamental issues of structural stability, buckling
of FGM plates and shells have received considerable concern since
1997, when Feldman [3] investigated buckling of FGM rectangular
plates. Then, much interest had been attracted to elastic buckling
issues [4–6]. The research topics covered a wild range of buckling
behaviors of FGM plates and shells, geometrically linear or nonlin-
ear, static or transient and etc..

Recently, some attention was attracted to elastoplastic FGMs.
The material properties of FGMs can be depicted by a homogeniza-
tion rule of mixture, named TTO model, initially proposed by Tam-
ura et al. [7] for metal alloy. Bocciarelli et al. [8] extended TTO
model to J2 flow theory with isotropic hardening to describe the
elastoplastic behaviors of FGMs and he pointed out that TTO model
is an effective homogenization rule governing the transition from

Hencky-Huber-Mises (HHM) model, typical of metals, toward a
Drucker-Prager constitutive model which is more suitable to
describe the mechanical response of ceramics. Meanwhile, an
inverse analysis procedure, based on indentation tests, was devel-
oped to identify the stress transfer parameters in TTO model [9,10].

Currently, researches on mechanical performances of elasto-
plastic FGM structures primly focused on thermal responses
[11,12] and cracking resistance [13,14] of FGM structures. Few
literature reported elastoplastic buckling of FGM plates and shells.
Generally, in ceramic/metallic FGMs, ductile metallic constituents
may initiate severe plastic deformation when stresses rise. As gen-
eral knows, material plasticity would greatly reduce the buckling
critical load of homogeneous shells [15]. However, for FGM cylin-
drical shells, it is still interesting to explore this effect. In this
paper, buckling behaviors of elastoplastic FGM cylindrical shells
under combined axial compression and external pressure are
investigated with classical shell theory and J2 deformation theory.

2. Material constitutive relation

Generally, the constituent distribution of FGMs submits the
power law ruler [6]

Vc ¼ ð0:5þ z=hÞk; Vc þ Vm ¼ 1 ð1Þ

where k is the power law index, which is a critical parameter
of constituent distribution. V denotes the volume fraction. The
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subscripts c, m respectively correspond to the ceramic and metallic
constituents.

In FGMs, ceramic constituents are usually brittle materials of
relatively higher elastic modulus and strength than those of metal-
lic constituents, which are typically ductile materials. According to
the TTO model, the ceramic constituents are assumed to be elastic.
Material flow of FGMs mainly arouse by plastic flow of the metallic
constituent. Thus, multi-linear hardening elastoplastic material
properties of FGMs [9] can be defined as

E ¼ qþ Ec
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where E(z) is elastic modulus, rY(z) yield limit, and H(z) the tangent
modulus. q ¼ ~qEc is the ratio of stress to strain transfer. ~q is the
stress transfer parameter, and ~q � 0. It should be note that ~q ¼ 0
represents the FGMs flow plastically once the metallic constituent
reach the yield limit.

The most popular elastoplastic constitutive relations of homo-
geneous materials are J2 flow theory and J2 deformation theory.
According to Mao and Lu [15], for axial compressed homogeneous
cylindrical shells, J2 deformation theory acutely predicted the plas-
tic buckling critical load of experiments, while J2 flow theory was
of enormous deviation. This is the well-known plastic buckling
paradox which is still open to question in modern structural stabil-
ity theory [16]. Thus, the following analysis would be presented by
using J2 deformation theory, the constitutive relation of FGMs can
be given as

eij ¼
3

2Es
rij þ

1
K
� 3

2Es

� �
dijrm ð3Þ

in which, the subscript i, j represent x, y, z. The secant modulus in
complex stress state Es ¼ 3EE0

s =½3E� ð1� 2mÞE0
s �;K ¼ E=ð1� 2mÞ, E0

s

is the secant modulus in the uniaxial tension experiment. The mean
stress rm ¼ ðrxx þ ryy þ rzzÞ=3. dij is unit matrix. The incremental
form of Eq. (3) reads
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in which / = EtEs/(Es � Et). The tangent modulus in complex stress
state Et = 3EH/[3E � (1 � 2m)H]. Sij is the tensor of stress deviator.
J2 = SijSij/2. According to classic shell theory, the stresses out of the
plane rxz, ryz, rzz can be neglected. Accordingly, Eq. (4) is reduced as
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3. Formulation

Assume FGM cylindrical shells are subjected to uniform axial
compression force F and external pressure �q as shown in Fig. 1.
The geometry can be demonstrated by thickness h, length L, and
mean radius R, and the coordinate system is placed on the middle
surface, with the origin o at its left end and the coordinate axes x, y,
and z in the axial, circumferential, and the inward normal direc-
tions respectively.

According to the nonlinear von Kárman strain–displacement
relations of cylindrical shells, the incremental strain components
on the middle plane of the shells are

de0
xx ¼ du;x þ

1
2

dw2
;x; de0

yy ¼ dv ;y �
dw
R
þ 1

2
dw2

;y; de0
xy

¼ du;y þ dv ;x þ dw;xdw;y ð6Þ

where d denotes the increment. u, v, w are displacements along
x, y, z, and the subscript comma denotes partial derivative.

The incremental strain components of cylindrical shells are

de ¼ de0 þ zdK ð7Þ

where de ¼ dexx deyy dexy
� �T

;dK ¼ dKxx dKyy dKxy
� �T

;de0 ¼
de0

xx de0
yy de0

xy

� �T
and the curvature components are

dKxx ¼ �dw;xx; dKyy ¼ �dw;yy; dKxy ¼ �2dw;xy ð8Þ

The incremental stress components can be given by rewriting Eq.
(4) as

dr ¼ Ade ð9Þ

where dr ¼ ½drxx dryy drxy �T and the matrix A = [aij],
(i, j = 1, 2, 3). It should be noted that aij are stress-dependent
material parameters demonstrating anisotropy of elastoplastic
FGMs. For cylindrical shells, the incremental internal force and
moment components
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Fig. 1. Geometry and the coordinate system of combine-loaded FGM cylindrical shells.
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