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a b s t r a c t

This work is concerned with the modeling of ductile damage behavior in composite materials by the
means of the Incremental Micromechanics Scheme (IMS) as Mean-Fields Homogenization (MFH) tech-
nique. Indeed, IMS is known for its capability to overcome the well-known accuracy restrictions of the
Mori–Tanaka (MT) and Self-Consistent (SC) schemes when a high volume fraction of heterogeneities
or/and a high contrast between phases properties is reached. This micromechanics formalism is based
on the Eshelby’s inclusion concept. The kinematic equation of Dederichs and Zeller (1973) is used as for-
mal solution of the heterogeneous material problem. The nonlinear behavior of the composite is
addressed in a general framework based on the kinematic hardening of Lemaı̂tre–Chaboche’s ductile
damage model. Thus a classical J2 plasticity that accounts for the damage evolution within the micro-
structure is implemented. The time discretization of all rate relations is solved through a generalized
mid-point rule that yields to an anisotropic consistent (algorithmic) tangent modulus. To avoid a stiffer
macroscopic stress–strain response, an isotropization procedure is adopted during the computation of
the Eshelby tensor involved in the IMS modeling. From a computational aspect, the non linear response
of the composite is obtained through two interdependent loops: inner and outer. In the inner loop, the
IMS determines the global strain concentration tensor that is passed to the outer loop. Then, the macro-
scopic stress–strain response is derived using an iterative algorithm based on the Hill-type incremental
formulation. Numerical results are obtained considering several heterogeneous materials such as Metal
Matrix Composites (MMCs) as well as Carbon fibers reinforced Epoxy Matrix Composites. The model’s
predictions are compared in most of the cases, with experimental data and predictions obtained from
MT-based modeling in the open literature.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In several technological domains, the design of composite
materials retains serious attentions on the safety, economy and
durability of material’s constituents in terms of damage initiation.
As damage characterizes a local approach of the failure, its
understanding and physical description present a major challenge
in various engineering-related disciplines [1]. For ductile materials,
the damage’s onset begins at microscale by the nucleation, growth
and coalescence of micro-cavities, for instance in Metal Matrix
Composites (MMCs) [2–5]. These occurred phenomena within the
microstructure require the use of robust tools to account for their
effects at the macroscopic level. Thus the micromechanics which
establishes relationship between continuum properties of a

material and its microstructure, offers an ideal framework to treat
that issue. The micro–macro transition is often set up through
homogenization tools among which are the MFH approaches. For
multi-scale analysis, MFH approaches constitute a good compro-
mise between the prediction’s accuracy and the computational
cost through either analytically and/or numerically derivations
from the constituents’ properties [6].

Since relevant works of Eshelby [7] about the ellipsoidal inclu-
sion concept, MFH approaches have gained noteworthy progress
and have been intensively used for the evaluation of the effective
elastic properties of heterogeneous composites [8]. Indeed, from
earlier works provided by Voigt and Reuss on the micromechanics
bounds, more accurate models have been developed accounting for
the morphological and topological textures of material constitu-
ents. One can recall first SC schemes applied to heterogeneous
materials by Hershey [9] and Kroner [10]. Another used scheme
is the M–T scheme developed by Mori and Tanaka [11]. Its
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derivation is based on linear resolution of the kinematic integral
equation of Dederichs and Zeller [12] and focuses particular inter-
ests because of its good prediction of heterogeneous effective
mechanical properties at low and moderate volume fractions of
reinforcements.

For non-linear behavior, the extension of MFH approaches to
account for such a response has been widely studied. These tech-
niques are based on Hill-type linearization [13] which provides
an incremental resolution of the non linear stress–strain problem.
Within this framework, several MFH models are used and dis-
cussed from a broad literature. One can call up earlier works of
Hutchinson [14] using the SC scheme and that of Tandon and Weng
[15] using the M–T scheme or Double Inclusion (DI) derivations
provided by Nemat-Nasser and Hori [16]. More recently, the M–T
strategy is used by Doghri and Ouaar [17], Pierard and Doghri
[18] to derive the non-linear behavior of elasto-plastic composites.
Wu et al. [6] use the M–T modeling to study the non-linear behav-
ior of ductile damage matrix composites with an emphasis on the
strain/damage localization due to lost of ellipticity. Others
approaches like the so-called affine method and secant method
are also used to tackle non-linear homogenization. A comprehen-
sive overview of these approach can be found in [19,20]. The
above-mentioned models have been used with success to predict
the non-linear behavior of heterogeneous materials with low or
moderate reinforcement volume fractions. To deal, for instance,
with long fibers reinforced composites as reported in [21,22],
where experiments are done on E-glass fibers/nylon-6 and Long
Glass Fibers (LGF)/polymer PA6 with high volume fractions of
66.5, 68.8, 71.1 and 73.3 vol.%, it turns out to set up an alternative
approach that overcomes the well-known accuracy restrictions of
classical MFH approaches. Therefore, the Incremental Microme-
chanics Scheme (IMS) has been developed by Vieville [23] and
Vieville and Lipinski [24] for that issue. IMS has demonstrated its
performance when a high volume fraction or/and a high contrast
between phases properties is reached. The composite is built in
several iterative steps by a gradual addition of infinitesimal quan-
tities of reinforcements. Obviously, more CPU cost time can be
highlighted to obtain the final homogenized properties. However,
IMS is valid for treating any kind of anisotropic composite materi-
als and permits to go beyond accurate limitations of others MFH
schemes. It is based on the idea of the Differential Scheme (DS)
and offers the great advantage that one has not to resolve any ten-
sorial differential equations. This approach has been successfully
used to predict elastic properties of heterogeneous materials
[25,26] and more recently by Azoti et al. [27] in a modeling that
account for the elasto-plastic behavior.

In this work, a formulation of applying the IMS to composites
undergoing ductile damage deformation is proposed. The
micromechanics framework is based on the kinematic integral
equation of Dederichs and Zeller [12] as formal solution for the
heterogeneous material’s problem. Based on works of Vieville
et al. [28], a formulation of IMS derived from the dilute concen-
tration procedure is applied. At each iterative step, IMS deals with
a homogenization technique that considers the reference medium
as the equivalent material at the previous step. For each mate-
rial’s constituent, the damage behavior is introduced through
the so-called effective stress r̂. The damage variable D follows
Lemaitre and Chaboche’s law in which the accumulated plastic
strain is derived from the classical J2 flow rule with a kinematic
hardening. This enables to properly account for the Bauschinger
effect when dealing with cyclic loadings. Following works of
Doghri [29], the consistent (algorithmic) modulus is obtained
for constituents. The well-known damage localization problem
is not addressed herein since critical level of loadings correspond-
ing to the lost of uniqueness are not reached in applications. To
this end, at each time increment, the positive-definite properties

of the algorithmic modulus is checked by computing its eigen-
values. Once, eigenvalues are negative, the IMS homogenization
process leading to the effective tangent stiffness tensor is
stopped. Also, during each iterative step of the IMS modeling,
the Eshelby tensor involved in the global strain concentration is
computed by an isotropization of the matrix phase. This isotrop-
ization discussed in Doghri and Ouaar [17] and Chaboche et al.
[30] is essential to avoid stiff macro stress–strain responses.

In what follows, Section 2 establishes the general framework of
a MFH by deriving the global strain concentration tensor AI . In the
Section 3, the classical J2 flow theory is recalled. In this section, the
procedure for obtaining the ductile damage’s internal variables is
shown through the return mapping algorithm. The consistent
(algorithmic) tangent operators are obtained and passed as infor-
mation to the IMS modeling presented in Section 4. The capability
of IMS to solve a ductile damage problem is shown in the Sections
5 and 6 through an iterative algorithm based on two (2) interde-
pendent loop. The numerical results, on MMCs as well as epoxy
based matrix composites in Section 7, are compared with experi-
mental data and others solutions available from the open
literature.

2. Background on MFH approaches

Most of materials are homogeneous at the macro-scale. In order
to capture fine details, one has to step down inside the microstruc-
ture that appears heterogeneous. A Representative Volume Ele-
ment (RVE), as suggested by Hill [31], Kroner [32,33] and Willis
[34], can be defined and on which admissible static or kinematic
loads can be applied (boundary value problem). The RVE is
assumed to be in equilibrium and its overall strain is compatible.
The body forces and inertia term are absents. These general consid-
erations are restricted to the case of a linear constitutive laws with
small transformations. The micromechanics scale transition con-
sists firstly, in the localization of the macroscopic strain tensor E
by the introduction of a fourth order global strain concentration
tensor AðrÞ and secondly, in the homogenization process, which
uses averaging techniques to approximate the macroscopic behav-
ior. Note that AðrÞ remains the unknown parameter that contains
all microstructural informations. The effective properties of the
RVE are given by:

Ceff ¼ 1
V

Z
V

cðrÞ : AðrÞdV ð1Þ

where cðrÞ denotes the local uniform modulus and V is the volume
of the RVE. The operator ‘‘:’’ states for tensorial product contracted
over two indices. The global strain concentration tensor AðrÞ links
the local strain �ðrÞ and the macroscopic strain E as follow:

�ðrÞ ¼ AðrÞ : E ð2Þ

The local uniform modulus is split into a reference part cR and a
fluctuation part dc such as cðrÞ ¼ cRðrÞ þ dcðrÞ. This latter relation
can be substituted within the equilibrium equation rij;j ¼ 0 and
therefore enables the derivation of the kinematic integral equation
of Dederichs and Zeller [12]. In terms of strain fields, the kinematic
integral equation arises:

�ðrÞ ¼ ER �
Z

V
Cðr � r0Þ : dcðr0Þ : �ðr0ÞdV 0 ð3Þ

where ER is the homogeneous strain field within the reference med-
ium and Cðr � r0Þ is the modified Green tensor. Based on the kine-
matic integral Eq. (3) and the Eshelby’s inclusion concept [7] for
ellipsoidal inclusions, Vieville et al. [28] derived an expression of
the global strain concentration tensor AIðrÞ inside an Ith inclusion
through an iterative procedure such as:
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