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a b s t r a c t

Functionally graded material (FGM) bars in axial motion (hereafter called ‘‘FGM axial bars’’) have great
potential for applications in many engineering fields. Therefore, it is important to develop a reliable
mathematical model that can provide very accurate dynamic and wave propagation characteristics in
FGM axial bars, especially at high frequencies. As an extension of our previous work, we present a spectral
element model for a modified FGM axial bar model wherein nonuniform lateral contraction in the thick-
ness direction is taken into account. We assume that material properties of the modified FGM axial bar
model vary in the radial direction according to the power law. The performance of the proposed spectral
element model is validated through comparison with solutions from a conventional finite element model,
and with the results from the previous FGM axial bar model. In addition, the effects of lateral contraction
on the dynamic and wave propagation characteristics in example FGM axial bars are numerically
investigated.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, functionally graded materials (FGMs) have received
considerable attention in diverse engineering fields, including the
aerospace, automobile, electronics, biomedical, and defense indus-
tries. These are advanced composite materials whose properties
can be spatially varied to achieve the desired structural, thermal,
or electrical functions. In addition, FGMs can help reduce residual
stresses or the stress concentration at an interface between two
dissimilar materials, and improve the strength and toughness of
a structure.

Many studies have been devoted to the static and dynamic anal-
ysis of FGM beams [1–18], FGM axial bars [19], FGM torsional bars
[20], FGM plates [21], and FGM annular circular plates and disks
[22,23]. In these studies, the material properties of one-dimen-
sional (1-D) FGM structures were assumed to vary across the thick-
ness (or radial) direction only [1–9,20], in the axial direction only
[10–12,19], or in both the axial and thickness (or radial) directions
[13,14]. In the literature, various solution methods have been
applied to static and dynamic analyses of FGM structures; these
include analytical methods [1–4,15,20–22], the Rayleigh–Ritz
method [16], the modal analysis method [10,14], power series
expansion methods [11,19], the differential quadrature method

[14], the dynamic stiffness method [23], the finite element method
(FEM) [5–9,12,17,18], and the spectral element method [24].

The FEM is a powerful computational method that can be
applied to diverse complex structures including FGM structures.
However, as a drawback to the FEM, a huge number of very fine
meshes might be required in order to improve the accuracy of
FEM solutions, especially in a high frequency regime. This can
result in a significant increase in computation cost because simple
polynomials that are independent of the vibrating frequency are
normally used as the interpolation functions in conventional finite
element formulations. In contrast to the FEM, the frequency
domain spectral element method (SEM) is an exact solution
method that can provide extremely accurate dynamic solutions,
even at very high frequencies, by employing a minimum number
of DOFs to significantly reduce the computation cost. This is
because an exact dynamic stiffness matrix (often called ‘‘spectral
element matrix’’) formulated by using frequency-dependent inter-
polation functions derived from exact free-wave solutions is used
in the SEM as the finite element stiffness matrix [25].

FGM axial bars that take motions in the axial or longitudinal
direction have great potential for the applications in many engi-
neering fields. However, despite the aforementioned advantages
of the SEM, there have been very few applications to FGM axial
bars. A literature survey reveals that Maalawi [19] was the first
to present analytical solutions for an FGM axial bar whose material
properties vary continuously in the axial direction, and Hong et al.
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[26] was the first to apply the SEM to an FGM axial bar whose
material properties vary in the radial direction. In [26], the lateral
contraction was assumed to be uniform in the radial direction.
However, physically, this may not be true for FGM bars whose
material properties vary in the radial direction.

Thus, the goals of this paper are: (1) to derive modified govern-
ing equations of motion for an FGM axial bar by taking into account
non-uniform lateral contraction in the thickness direction; (2) to
develop a spectral element model for the modified FGM axial bar
model; and (3) to investigate the effects of lateral contraction on
the dynamic and wave propagation characteristics in example
FGM axial bars.

2. Mathematical model: governing equations of motion

Fig. 1 shows the geometry of the uniform axisymmetric three-
layer FGM axial bar (hereafter called ‘‘axial bar’’) considered in this
study. The axial and radial coordinates are represented by x and r,
respectively. It is assumed that the cross section of the FGM axial
bar consists of three layers of different materials. The core
(0 6 r 6 rC) and the outer layer (rI 6 r 6 rO) are made of isotropic
metals, and the inner layer (rC 6 r 6 rI) is made of an FGM. We note
that rC, rI, and rO are the radii of the core, the inner layer, and the
outer layer of the axial bar, respectively. In the following deriva-
tion, the subscripts C, I, and O denote quantities for the core, the
inner layer, and the outer layer, respectively.

The displacement fields in the three layers of the axial bar are
assumed to be in the following forms:
�uCðx; r; tÞ ¼ uCðx; tÞ
�vCðx; r; tÞ ¼ rwCðx; tÞ

ð0 6 r 6 rCÞ ð1aÞ

�uIðx; r; tÞ ¼ uCðx; tÞ
�v Iðx; r; tÞ ¼ rCwCðx; tÞ þ ðr � rCÞwIðx; tÞ

ðrC 6 r 6 rIÞ ð1bÞ

�uOðx;r;tÞ¼uCðx;tÞ
�vOðx;r;tÞ¼ rCwCðx;tÞþðrI� rCÞwIðx;tÞþðr� rIÞwoðx;tÞ

ðrI 6 r6 rOÞ

ð1cÞ

where uC(x, t) is the axial displacement at the interface between the
core and the inner layer, and w(i)(x, t) (i = C, I, O) represent the lat-
eral contractions in the radial direction [27]. In this study, the axial
displacements of each layer are assumed to be independent of r as
the first order approximation. Note that the displacement fields in
Eq. (1) fully satisfy the displacement connectivity at the interfaces
among three layers. The strains in each layer can be obtained from

eðiÞxx ¼
@�uðiÞ
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where the subscript h denotes the circumferential direction. The
constitutive relations for the elastic materials in each layer are
given by
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where k(i) and l(i) (i = C, I, O) are the Lamé constants, which are
assumed to be constant in the core and the outer layer. In the inner
layer, however, they are assumed to vary in the radial direction as
follows:

kIðrÞ ¼
EIðrÞm

ð1� 2mÞð1þ mÞ ; lIðrÞ ¼
EIðrÞ

2ð1þ mÞ ð4Þ

By using the strains given by Eq. (2) and the constitutive rela-
tions given by Eq. (3), the strain energy of an axial bar element
of length l can be obtained as
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where the symbols used for effective structural properties of the
axial bar are defined in Appendix A. The kinetic energy of the axial
bar element can be obtained as
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2

X
i

Z l

0

Z
A

qðiÞ _�u
2
ðiÞ þ qðiÞ _�v2

ðiÞ

� �
dAdx

¼ 1
2

Z l

0
mUU _u2

C þmCC
_w2

C þmII
_w2

I þmOO
_w2

O þ 2mCI
_wC

_wI

�
þ2mCO

_wC
_wO þ 2mIO

_wI
_wO

�
dx ð6Þ

where q(i) (i = C, I, O) are the mass densities, and the symbols used
for effective inertia properties are defined in Appendix A. The vir-
tual work done by a distributed axial force q(x, t) acting on the outer
surface of the axial bar is given by

dW ¼
Z l

0
qðx; tÞd�uOdx ¼

Z l

0
qðx; tÞduCdx ð7Þ

In this study, the material properties of the inner layer were
assumed to satisfy the power law [28] as follows:

EIðrÞ ¼ ðEO � ECÞ
r � rC

rI � rC

� �n

þ EC

qIðrÞ ¼ ðqO � qCÞ
r � rC

rI � rC

� �n

þ qC

ð8Þ

where n is the power law exponent.
Using Eqs. (5)–(7), the equations of motion of the axial bar can

be derived from Hamilton’s principle in the following forms:
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Fig. 1. Material properties and geometry of a three-layer FGM axial bar (units:
mm).
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