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The phenomenon of liquid-gas phase transition occurring in heavy ion collisions at intermediate energies 
is a subject of contemporary interest. Phase transition is usually characterized by the specific behaviour 
of state variables like pressure, density, energy etc. In heavy ion collisions there is no direct way of 
accessing these state variables and hence unambiguous detection of phase transition becomes difficult. 
This work establishes that signatures of phase transition can be extracted from the observables which are 
easily accessible in experiments and these have similar behaviour as the state variables. The temperature 
dependence of the first order derivative of the order parameters related to the largest and second largest 
cluster size (produced in heavy ion collisions) exhibit similar behaviour as that of the variation of 
specific heat at constant volume C v which is an established signature of first order phase transition. 
This motivates us to propose these derivatives as confirmatory signals of liquid-gas phase transition. The 
measurement of these signals in easily feasible in most experiments as compared to the other signatures 
like specific heat, caloric curve or bimodality. This temperature where the peak appears is designated to 
be the transition temperature and the effect of certain parameters on this has also been examined.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The study of liquid gas phase transition in heavy ion collisions 
has generated a lot of interest amongst the nuclear physicists in 
the recent years [1–6]. Different signatures of this transition have 
been studied extensively both theoretically [2,4–7] as well as ex-
perimentally [4–6]. First order phase transition is well character-
ized by some typical behaviour of different thermodynamic state 
variables like pressure, density, energy etc [8,9]. For example, the 
variation of excitation energy and specific heat with temperature 
are two theoretically well studied signatures in order to detect 
the first order phase transition [10–12]. The difficulty of access-
ing these state variables experimentally motivated us to look for 
more direct signatures of phase transition and in the recent papers 
[13,14] we have established the variation of derivative of mul-
tiplicity as a signature of liquid gas phase transition in nuclear 
multifragmentation. In this work we propose two new signatures 
of first order phase transition which can be measured more eas-
ily. The size of the largest cluster has already been established as 
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an order parameter for first order phase transition in heavy ion 
collisions. Bimodal distribution of the order parameter at a certain 
temperature (or excitation energy) establishes the coexistence of 
two phases simultaneously and well studied both theoretically and 
experimentally [15–19]. Bimodality means two peaked distribution 
and the temperature where these peaks have equal height is iden-
tified as the transition temperature. There can be some ambiguity 
both experimentally and theoretically regarding the identification 
of equal heights of these peaks since the largest cluster distribu-
tion loose sharpness due to finite size of the system [20]. In view 
of this we propose a new signature related to the largest cluster 
size which can be identified much easily both theoretically as well 
as experimentally as compared to the bimodality of the largest 
cluster. The temperature dependence of first-order derivative of 
the largest cluster display similar behaviour as that of the specific 
heat at constant volume. Not only that both these variables also 
peak at the same temperature. We would like to emphasize that 
identification and determination of size of the largest cluster pro-
duced in fragmentation of hot nuclear system might be easier for 
the experiments as compared to the total multiplicity where is it 
required to detect all the fragments produced. In this respect this 
proposed new signature is of much greater significance as com-
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pared to the one proposed by us recently [13]. Another observable 
we have proposed here is related to the difference (normalized) 
between the sizes of the first and the second largest clusters which 
also serve as an order parameter for the phase transition in nuclear 
multifragmentation and is well studied experimentally [21,22]. The 
derivative of this also peaks at the same temperature as the spe-
cific heat and hence this can confirm the presence of liquid gas 
phase transition in nuclear multifragmentation as well. In this let-
ter, we propose these two new signatures in order to establish the 
existence of liquid gas phase transition in heavy ion collisions and 
to determine the transition temperature as well.

We have used statistical models more specifically the canonical 
thermodynamical model (CTM) [23] in order to study the fragmen-
tation of nuclei. In such models [3,23,24] of nuclear disassembly it 
is assumed that there statistical equilibrium is attained at freeze 
out stage and the population of different channels of disintegra-
tion is solely decided by statistical weights in the available phase 
space. The calculation is done for a fixed system size, freeze out 
volume and temperature. The total multiplicity, the average size of 
the largest and the second largest cluster are some of the observ-
ables calculated from this model which can be measured experi-
mentally as well. As our primary interest here is to study phase 
transition in nuclear system owing to the nuclear force alone, like 
most theoretical models we have considered symmetric nuclear 
matter where the Coulomb interaction is switched off [25,26] (the 
Coulomb interaction being a long range one suppresses the signa-
tures of phase transition) and there is no distinction made between 
neutron and proton.

We give a very brief description of the model and then present 
our results. Finally we will summarize and present the future out-
look of this work.

2. Model description

In one component canonical model, we consider a system of A0

nucleons disintegrating at constant temperature (T ) and freeze-out 
volume (V f ). The partitioning into different composites is done 
such that all partitions have the correct A0. The canonical partition 
function is given by

Q A0 =
∑∏ (ωA)nA

nA ! (1)

Here the product is over all fragments of one break up chan-
nel and sum is over all possible channels of break-up satisfying 
A0 = ∑

A × nA where nA is the number of composites of mass 
number A in the given channel and ωA is the partition function 
of the composite having A nucleons. The partition function Q A0 is 
calculated using a recursion relation [23,27]

The partition function of the composite ωA is a product of two 
parts and is given by

ωA = V

h3
(2πmT )3/2 A3/2 × zA(int) (2)

The first part is due to the translational motion and the second 
part zA(int) is the intrinsic partition function of the composite. V
is the volume available for translational motion. Note that V will 
be less than V f , the volume to which the system has expanded 
at break up. In general, we take V f to be equal to three to six 
times the normal nuclear volume. We use V = V f − V 0, where V 0
is the normal volume of nucleus with A0 nucleons. The details of 
the model and properties of the composites used in this work are 
listed in details in [23].

Here we introduce briefly the observables of interest in our 
present work, one is the average size of the largest cluster Amax

and other is a2. Average size of the largest cluster is given as,

〈Amax〉 =
∑

Amax . Pr(Amax) (3)

where Pr(Amax) is the probability of getting a fragment of size 
Amax as the largest one. This probability is given as,

Pr(Amax) = �Q A0(Amax)

Q A0(ω1,ω2,ω3, ...,ωA0 )
(4)

where,

�Q A0(Amax) = Q A0(ω1,ω2, ...,ωAmax ,0, ...,0)

−Q A0(ω1,ω2, ...,ωAmax−1 ,0, ...,0) (5)

This quantity �Q A0 (Amax) represents the total partition function 
in fragmentation of a system of size A0, considering only those 
events where the size of the largest fragment is exactly Amax For 
the suitability of this work, we will use the parameter amax =
〈Amax〉/A0 which is the normalized size of the largest cluster (di-
vided by the system size).

The normalized variable a2 is (〈Amax〉 − 〈Amax−1〉)/(〈Amax〉 +
〈Amax−1〉) [21,22], where 〈Amax−1〉 is the average size of the second 
largest fragment. One can calculate it, by proceeding in a simi-
lar way [16] of 〈Amax〉. Thus if Pr2(Amax−1) is the probability for 
Amax−1 to be the second largest fragment size, then

〈Amax−1〉 =
∑

Amax−1 . Pr2(Amax−1) (6)

Now, to get this probability, we see that Amax−1 can be the 
second largest if (a) there is at least one fragment of size Amax−1

and just one fragment of size Amax > Amax−1 or if (b) there are 
more than one fragment of size Amax−1 but no fragment larger 
than it i.e. Amax = Amax−1. The partition function for the case (a) is

Q a =
∑

ωAmax .�Q A0−Amax(Amax−1) (7)

where the sum goes from (Amax−1 + 1) to its maximum possible 
value and for the case (b) is

Q b = �Q A0(Amax−1) − ωAmax−1

. Q A0−Amax−1(ω1,ω2, ...,ωAmax−1−1,0, ....) (8)

The first term is the total partition function for the channels where 
the largest cluster size is Amax−1 but the number of such clus-
ters can be one or more. The second term gives the total partition 
function for the channels where the number of fragments of size 
Amax−1 (i.e., largest cluster) is just one. So the difference is the
partition function for case (b). Therefore, the second largest cluster 
probability will be,

Pr2(Amax−1) = [Q a + Q b]/Q A0 (9)

Once we get the probability, using Eqn. (6) 〈Amax−1〉 can be calcu-
lated.

3. Results

The size of the largest cluster formed in the fragmentation of 
an excited nuclei behaves as an order parameter for first order 
phase transition [15,28–30]. The largest cluster size varies (de-
creases) very slowly as the temperature rises and then suddenly 
as the liquid-gas transition temperature is reached, there is a sud-
den fall in the largest cluster size after which it again decreases 
very slowly. This behaviour is depicted in Fig. 1(a). a2 which rep-
resents the normalized size difference of the first and the second 
largest cluster also displays similar behaviour as amax and that is 
shown in Fig. 1(b). This parameter is also markedly different in the 
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