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In the Standard Model, the electroweak symmetry is broken by a complex, SU (2)-doublet Higgs field and 
the vacuum manifold SU (2) × U (1)/U (1) has the topology of a 3-sphere. We remark that there exist 
theoretical alternatives that are locally isomorphic, but in which the vacuum manifold is homeomorphic 
to an arbitrary non-trivial principal U (1)-bundle over a 2-sphere. These alternatives have non-trivial 
fundamental group and thus feature topologically-stable electroweak strings. An alternative based on 
the manifold RP 3 (with fundamental group Z/2) allows custodial protection of gauge boson masses and 
their couplings to fermions and has an explicit realisation in the Minimal Composite Higgs Model, in the 
case of maximal electroweak symmetry breaking. We show that, in common with all alternatives to S3, 
such models have a problem with fermion masses.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Decades of experiment have confirmed that the weak nuclear 
force and the electromagnetic force are described by a gauge the-
ory in which a group locally isomorphic to SU (2) × U (1) is non-
linearly realised in the vacuum, with only the electromagnetic 
subgroup U (1) ⊂ SU (2) × U (1) being linearly realised. Thus, the 
electroweak (EW) vacuum is degenerate and the vacua are de-
scribed by a homogeneous space SU (2) × U (1)/U (1).

The starting point for this Article is the observation that there 
are many ways to include U (1) in SU (2) × U (1); different ways 
lead to homogeneous spaces that can be topologically inequivalent. 
In the Standard Model (SM), the vacuum manifold arises due to a 
non-vanishing vacuum expection value (VEV) of the Higgs field, 
carrying the doublet representation of SU (2), and is homeomor-
phic to the 3-sphere, S3. As is well-known, this is rather boring 
from a physicist’s point of view, since the vanishing of the ho-
motopy groups π1(S3) (respectively π2(S3)) implies the absence 
of topologically-stable strings (respectively monopoles). Here, we 
investigate all possible inclusions of U (1), which lead to vacuum 
manifolds with fundamental group given by an arbitrary cyclic 
group; alternatives to the SM based on such inclusions thus fea-
ture topologically-stable strings, with potentially interesting conse-
quences, a priori, for astrophysics, cosmology, and particle physics.
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We begin our investigation with a study of the topological 
properties of the homogeneous spaces obtained via the different 
U (1) inclusions. Informally, the topologically distinct inclusions of 
U (1) differ in the number of times, p, that the U (1) subgroup 
is wrapped around the U (1) factor of SU (2) × U (1). We show 
that the homogeneous spaces are topologically equivalent to lens 
spaces and to circle bundles over a 2-sphere. Our first main re-
sult is to catalogue the basic algebraic topological invariants of the 
spaces, in particular showing that the fundamental group is iso-
morphic to the cyclic group with p elements, Z/p. This implies 
that a physical model with such a vacuum structure (assuming 
that such a model exists) necessarily features stable topologically 
strings carrying a charge, labelled by an integer, that is conserved 
under addition modulo p. One expects that, in such a model, a net-
work of such strings would form in the early Universe and persist 
to this day.

Having established that there exist an infinite number (one 
for each integer p) of novel possibilities for the vacuum mani-
fold topology that are compatible with the usual local EW vac-
uum structure, we next turn to the question of whether there 
exist physical models featuring them. The answer is yes, with a 
rather obvious example being given by the non-linear sigma model 
with target space SU (2) × U (1)/U (1), which furnishes us with 
a consistent effective theory for the dynamics in the low-energy, 
broken-symmetry phase. We also show that one can construct 
linear sigma models with these vacuum manifolds, providing a 
description that is valid up to arbitrarily high energies; simple ex-
amples of such models are provided by theories in which the Higgs 
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field of the SM, which carries a doublet irreducible representation 
(irrep) of SU (2), is replaced by a scalar particle carrying a higher-
dimensional irrep.

Models of these types are rather implausible from the phe-
nomenological viewpoint, but it turns out that one can also find 
non-trivial vacua in a model that is currently beloved by phe-
nomenologists. This model is the so-called Minimal Composite 
Higgs Model, and is arguably the leading candidate for a model in 
which the EW symmetry is broken naturally via strong dynamics. 
At energies below the TeV scale, it may be described by a non-
linear sigma model with target space isomorphic to S O (5)/S O (4), 
at least locally. But, in order that the decay rate of Z bosons 
to bottom quarks not differ substantially from the experimental 
value, it is convenient to choose the target space to be globally 
S O (5)/O (4), which is homeomorphic to RP 4. As is well-known 
[1], the dynamics cannot be fully invariant under the S O (5) ac-
tion and the small breakings thereof (due, e.g., to gauging of the 
electroweak subgroup and couplings to fermions) induce a poten-
tial for the scalar degrees of freedom on the target space. The EW 
vacuum manifold is then obtained as the minimum of this poten-
tial. With no EW symmetry breaking (‘v = 0’ in the usual notation 
of the composite Higgs literature), the vacuum manifold consists of 
a point, whereas with maximal EW symmetry breaking (‘v = f ’ in 
the usual notation), it consists of the manifold RP 3, with funda-
mental group Z/2. In intermediate cases (‘0 < v < f ’), the vacuum 
manifold is the usual S3 of the SM.

Although our current computational competence makes it im-
possible to make precise predictions in models featuring strong 
dynamics, we can nevertheless make estimates using dimensional 
analysis. As is well-known, in composite Higgs models, the mea-
sured S-parameter suggests that we need a vacuum in which 
v/ f � 0.2, such that a vacuum with topological strings is ruled 
out. It is thus of interest to ask whether there are any models 
featuring EW topological strings that are phenomenologically vi-
able, given current experimental data. We shall see that, whilst it 
is possible to reconcile such models with the panoply of precision 
measurements that have been performed in the EW sector (such as 
the mass ratios of gauge bosons and their couplings to fermions), 
they are all ultimately ruled out by the simple (although some-
what subtle in origin) fact that such models are incompatible with 
non-vanishing fermion masses.

Thus, we arrive at the conclusion that, whatever the true mech-
anism of EW symmetry breaking, it must lead to a vacuum mani-
fold homeomorphic to S3, just as in the SM, unless we are willing 
to entertain drastic modifications of the structure of the EW sec-
tor. Although this result is somewhat disappointing, it is perhaps 
hardly a surprise, given that there already exists so much data 
probing the local properties of EW vacuum manifold, all of which 
confirms the SM. Nevertheless, we feel that the very existence of 
such theoretical alternatives to the status quo, and their appear-
ance in one of the most favoured models of natural EW symmetry 
breaking, is a noteworthy curiosity in its own right.

The outline is as follows. In §2, we discuss the topology of the 
vacuum manifold SU (2) × U (1)/U (1) and in §3 we show that an 
general effective field theory based on a vacuum manifold with 
non-trivial topology can be consistent with data, apart from a 
problem with fermion masses. In §4 and §5, we present explicit 
examples with non-trivial topology based on linear sigma models 
and composite Higgs models.

2. Topology of S U (2) × U (1)/U (1)

We begin our discussion by assuming that the EW gauge group 
really is G = SU (2) × U (1), deferring discussion of groups locally 
isomorphic thereto until the end. We write elements of G as (U , z), 

where U is a 2 × 2 unitary matrix with unit determinant and z is 
a unit complex number. For p, q ∈ Z there is a homomorphism 
φp,q : U (1) → G given by φp,q(z) = (diag(zq, z−q), zp), and if (p, q)

are coprime then φp,q is injective, in which case we write H p,q ⊆ G
for its image. (Any injective homomorphism φ : U (1) → G is con-
jugate to some φp,q , as its projection to the SU (2)-factor may be 
conjugated to land in the standard maximal torus.)

Our first goal is to investigate the topology of the homoge-
neous spaces G/H p,q . An immediate result is that G/H p,q cannot 
be homeomorphic for different p, because a loop wound once 
around H p,q is wound p times around the U (1) factor of G . 
This implies, using the long exact sequence of homotopy groups 
π1(H p,q) ∼= Z → π1(G) ∼= Z → π1(G/H p,q) → π0(H p,q) ∼= 0 of the 
fibre bundle H p,q ↪→ G → G/H p,q , that π1(G/H p,q) ∼= Z/p. More-
over, we see that topologically-stable string configurations occur 
when p �= 1 [2].

To investigate the topology further, let K p,q = H p,q ∩ (SU (2) ×
{1}) ⊆ SU (2) and consider the function π : A 	→ (A, 1)H p,q :
SU (2) → G/H p,q . This is a composition of smooth maps SU (2) ↪→
G → G/H p,q and so smooth. The differential at the identity Dπ :
su(2) → g/hp,q is an isomorphism, and by homogeneity it follows 
that π is a submersion, and hence a local diffeomorphism. Further-
more the right K p,q-action on SU (2) acts freely and transitively on 
the fibres of π , exhibiting it as a principal K p,q-bundle, and hence 
giving a diffeomorphism SU (2)/K p,q ∼= G/H p,q .

Now K p,q = {diag(e2π iqk/p, e−2π iqk/p) : k ∈ Z} is the same sub-
group of SU (2) as K p,1, because (p, q) are coprime, and as K−p,1: 
thus we shall suppose p > 0. It follows that G/H p,q is diffeomor-
phic to SU (2)/K p,1, which is further diffeomorphic, as we now 
show, to a lens space [3]. These spaces are of great historical im-
portance in mathematics, providing the first examples of manifolds 
whose homeomorphism type is determined by neither their funda-
mental group and homology [4], nor even their homotopy type [5]. 
The lens space L(n, m) is defined for (n, m) coprime as the quo-
tient of the unit sphere, S3 ⊂ C

2 by the free Z/n-action generated 
by (z1, z2) 	→ (e2π i/nz1, e2π im/nz2). Identifying SU (2) with the unit 
sphere S3 ⊂ C

2, SU (2)/K p,1 is thus identified with the lens space 
L(p, 1).

The lens spaces L(p, 1) are precisely those 3-manifolds that 
arise as principal U (1)-bundles over the 2-sphere (except for S2 ×
U (1)). Indeed, the clutching construction shows that such bundles 
are in bijection with π1(U (1)) = Z, and this bijection may be given 
by assigning to a principal U (1)-bundle over the 2-sphere its Eu-
ler number. Writing U (1) = {diag(eiθ , e−iθ ) : θ ∈ [0, 2π)} ⊆ SU (2), 
the Hopf bundle h1 : SU (2) → SU (2)/U (1) = S2 is the principal 
U (1)-bundle with Euler number 1. As K p,1 ⊆ U (1) the map h1 is 
the composition

SU (2) −→ SU (2)/K p,1
hp−→ SU (2)/U (1) = S2

of a p-fold covering map and a principal (U (1)/K p,1 ∼= U (1))-bun-
dle hp , whose Euler number is therefore p and whose total space 
is G/H p,q ∼= SU (2)/K p,1 ∼= L(p, 1).

From this perspective, we may use standard results to read 
off the algebraic topological invariants of G/H p,q: the homotopy 
groups are given by π1 = Z/p, πi>1 = πi>1(S3) (so π2 = 0, π3 =
Z, π4 = Z/2, &c.); the integral cohomology is given by H0 =
Z, H1 = 0, H2 = Z/p, H3 = Z. Most interesting among these, for 
physicists, is π1 = Z/p.

How do these results relate to the SM? In that case, we postu-
late the existence of a Higgs field, that is a matter field φ whose 
potential is such that it acquires an non-vanishing VEV. It car-
ries the doublet irreducible representation of SU (2) and its charge 
q ∈ Z under U (1) is non-vanishing, but otherwise arbitrary. The 
G-action is then G : φ 	→ U zqφ. Without loss of generality, we 
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