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In this paper the emergence of the Chiral Magnetic Effect (CME) and the related anomalous current is 
investigated using the real time Dirac–Heisenberg–Wigner formalism. This method is widely used for 
describing strong field physics and QED vacuum tunneling phenomena as well as pair production in 
heavy-ion collisions. We extend earlier investigations of the CME in constant flux tube configuration by 
considering time dependent electric and magnetic fields. In this model we can follow the formation 
of axial charge separation, formation of axial current and then the emergence of the anomalous electric 
current. Qualitative results are shown for special field configurations that help to interpret the predictions 
of CME related effects in heavy-ion collisions at the RHIC Beam Energy Scan program.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Quantum chromodynamics (QCD) comes with the intriguing
phenomenon of topologically charged field configurations that pre-
sumed to develop charge separation in the presence of background 
magnetic fields [1,2]. This process is known as the Chiral Mag-
netic Effect (CME) and the electric current that is the result of 
this charge separation might be an experimentally verifiable conse-
quence of the theory. With particle accelerators like the Relativistic 
Heavy-Ion Collider (RHIC) and the Large Hadron Collider (LHC) cov-
ering ever larger range of the collision energy parameter space, 
enough experimental data have been accumulated to study QCD at 
these energy frontiers. The color electric and color magnetic fields 
forming at short initial times are so strong that they reach the 
critical fields strengths of Ecr = Bcr = m2c3

gh̄ . Meanwhile the by-
pass of highly charged nuclei in non-central collisions near the 
speed of light induces extremely strong electrodynamical magnetic 
fields. The colliding nuclei release quarks and antiquarks to form 
a plasma exposing them to the very strong magnetic background 
field that starts to polarize them, align their spins (helicities) with 
their momentum and separate the quarks and anti-quarks based 
on their charges. The color fields in these processes are often mod-
eled by a color flux tube that is the simplest non-trivial topolog-
ically charged field configuration. Since such topologically charged 
fields produce chirality imbalance, the difference in quark num-
bers manifests in charge difference and thus electric current. This 
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potential observability sparked interest in studying the chiral mag-
netic effect from different perspectives.

Many studies investigated the effect using different methods, 
such as real-time lattice simulations [13,12,11], including backre-
action [24] or hydrodynamics [14] where the anomaly gives rise to 
the Chiral Magnetic Wave. The strong field based description pro-
pose a natural, dynamical microscopical process that can account 
for the effect at least in the simplest topologically charged con-
figuration: the flux tube. Initial studies in this area were done by 
Ref. [5] considering a constant Abelian fluxtube. A natural exten-
sion of the constant flux tube model relevant to heavy-ion colli-
sions is to take into account the temporal change of the external 
and color fields. A motivation for doing so is that one may ex-
pect a better understanding of the time evolution of the system 
by invoking models from the semi-classical strong field descrip-
tion that already proven valuable in the case of hadron spectra 
and particle production description in heavy-ion collisions [8–10]. 
Along these lines in this work we use a real-time Wigner function 
based description known as the Dirac–Heisenberg–Wigner formal-
ism to model the quark fields under the influence of homogeneous 
but time dependent external fields. By restricting the model to ho-
mogeneous fields, we can also avoid the difficulties pointed out in 
Ref. [7].

First, we review the fundamentals of the Wigner-function based 
description in Section 2. Then in Section 3, we study a simple toy 
field configuration to assess qualitatively the description of the chi-
ral magnetic effect and the resulting currents. Next, we turn to 
more realistic field configurations aiming at mimicking the ones 
that are expected to be formed in relativistic heavy-ion collisions
at RHIC.
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2. Theoretical background

The Dirac–Heisenberg–Wigner (DHW) formalism is a real-time 
description of the one-particle Wigner function to describe the 
spatio-temporal evolution of a fermionic field under the influence 
of classical external fields. The choice of such a classical model 
is justified on one hand by the expected criticality of the glu-
onic fields in relativistic heavy-ion collisions and by the extremity 
of the magnetic background as detailed in the Introduction. This 
method has proven useful in studying the interplay of electromag-
netic fields with spatio-temporal variability [22,23].

The DHW equations can be formulated for U(1) and SU(N) 
fields, the latter being much more complicated in terms of struc-
ture. However, it was shown [5,10], that due to the strong Abelian 
dominance many aspects can be readily reproduced by the much 
simpler U(1) description because in that case the color fields can 
be diagonalized and decoupled to multiple copies of the equivalent 
Quantum Electrodynamics (QED) theory. This in turn was already 
widely investigated in the context of vacuum structure and pair 
production since the original formulation of the description by [3].

The U(1) Wigner function W (�x, �p, t) of a relativistic particle 
with mass m and charge g can be expanded on the Dirac spinor 
basis:

W (�x, �p, t) = 1

4

[
1s + iγ5p + γ μvμ + γ μγ5aμ + σμνtμν

]
(1)

such that the components represent scalar, pseudoscalar, vector, 
axial-vector and tensor quantities respectively. For the latter, we 
introduce the following three component vectors: (�t1)i = t0i − ti0

and (�t2)i = εi jkt jk . For homogeneous fields this results in a partial 
differential equation system of 16 real components, that following 
Ref. [4] reads:

Dts − 2�p · �t1 = 0 , (2)

Dtp + 2�p · �t2 = 2ma0 , (3)

Dtv0 + �D�x · �v = 0 , (4)

Dta0 + �D�x · �a = 2mp , (5)

Dt �v + �D�xv0 + 2�p × �a = −2m�t1 , (6)

Dt �a + �D�xa0 + 2�p × �v = 0 , (7)

Dt�t1 + �D�x × �t2 + 2�ps = 2m�v , (8)

Dt�t2 − �D�x × �t1 − 2�pp = 0 , (9)

where the evolution operators are given without any approxima-
tions by:

Dt = ∂t + g �E · �∇�p , (10)

�D�x = g �B × �∇�p . (11)

The components that are of interest to us are the current den-
sity �v, the axial current density �a and the axial charge density a0.

The initial conditions for vacuum are only non-vanishing for the 
mass density and the current density:

s(�p, t = −∞) = − 2m

ω(�p)
, (12)

�v(�p, t = −∞) = − 2�p
ω(�p)

, (13)

where ω2(�p) = m2 + p2
x + p2

y + p2
z .

As we are mainly interested in light quark production, we take 
the m → 0 limit. This results in only 8 coupled equations:

Dtv0 + �D�x · �v = 0 , (14)

Dta0 + �D�x · �a = 0 , (15)

Dt �v + �D�xv0 + 2�p × �a = 0 , (16)

Dt �a + �D�xa0 + 2�p × �v = 0 . (17)

To further simplify the equations we use the Method of Char-
acteristics [4]. We integrate the electric field to obtain the vec-
tor potential, and use that to shift the momentum variable �̃p =
�p + g

∫ �E(t)dt to get rid of the g �E · �∇�p term in Dt . This way only 
those momentum derivates remain that are multiplied by the mag-
netic field in �D�x .

We use a global pseudo-spectral collocation in the three di-
mensional momentum space on Rational Chebyshev polynomials 
[16,17], and a 4th order explicit Runge–Kutta stepper in time. The 
numerical code is powered by OpenCL to utilize Graphical Process-
ing Units (GPUs) for the dense tensor operations, that results in a 
factor of 30 speedup w.r.t. a conventional implementation.

The numerical solver was verified on the two important ana-
lytic solutions: the time dependent Sauter electric field case [15]
and the stationary magnetic field solution given in [3].

During the time evolution, we record the following momentum 
space integrals:

vμ(t) = 1

(2π)3

∞∫
−∞

dp3vμ(t, �p) , (18)

aμ(t) = 1

(2π)3

∞∫
−∞

dp3aμ(t, �p) . (19)

These quantities are corresponding to the total electric charge 
and current as well as the total axial charge and current respec-
tively. Electric charge is conserved, so v0(t) = 0, but the axial 
charge develops a non-zero value, since it is related to the chi-
ral imbalance: a0(t = +∞) = NR − NL .

As the functions of interest are discretized on the Rational 
Chebyshev basis, a matching spectrally convergent Clenshaw–
Curtis quadrature can be used to calculate these integrals pre-
cisely [18].

3. Sauter field configuration

Before applying the DHW formulation to study realistic field 
configurations it is worth taking a look at the outcome of simpler 
cases and verify that the model predictions match the expected 
CME characteristics. We chose the Sauter field for this initial study, 
as this field is widely studied and understood in the pair produc-
tion picture and can be used to build intuition on how the system 
behaves.

The Sauter field is given by:

f (t) = A cosh−2
(

t

τ

)
. (20)

In contrast to the massive case, where field amplitude scales are 
set by m2/g , in the massless limit there is no such specific intrin-
sic scale. But when we choose one (e.g. to minimize the cost of the 
numerical computation) it also sets the time scale τ0 = 1/

√
g A. If 

we let Ez(t) = Bz(t) = B y(t) = f (t) and calculate the anomalous 
electric current density we find an A2 dependence as shown on 
Fig. 1, in agreement with the Schwinger formula for pair produc-
tion, or in the CME setting with Ref. [5]

The next important thing in the CME picture is to verify that 
the anomaly effect only exists when none of the three fields, Ez , 
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