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Plane gravitational waves can admit a sixth ‘screw’ isometry beyond the usual five. The same is true 
of plane electromagnetic waves. From the point of view of integrable systems, a sixth isometry would 
appear to over-constrain particle dynamics in such waves; we show here, though, that no effect of 
the sixth isometry is independent of those from the usual five. Many properties of particle dynamics 
in a screw-symmetric gravitational wave are also seen in a (non-plane-wave) electromagnetic vortex; 
we make this connection explicit, showing that the screw-symmetric gravitational wave is the classical 
double copy of the vortex.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The plane wave approximation provides a simplified setting in 
which to investigate signatures of gravitational waves [1,2], such as 
the velocity memory effect [3–5], in which particles initially at rest 
acquire a constant, nonzero velocity after the wave has passed over 
them. The same effect is seen in electromagnetic plane waves, see 
e.g. [6], and [7] for historical references, with connections to the 
infra-red in both cases [8,7]. The possibility of mapping gravita-
tional observables onto a simpler gauge theory setting [9,10] pro-
vides one motivation for studying the “classical double copy” [11], 
that is the mapping of classical solutions of Einstein’s equations 
to classical solutions of Yang–Mills’ equations. This is part of a 
larger program on colour-kinematic duality, or double copy, a pre-
cise conjecture about how scattering amplitudes in gravity can be 
obtained from those in gauge theory by replacing colour structure 
with kinematic structure [12–14]. The double copy conjecture has 
been proven at tree level, and there are an increasing number of 
nontrivial examples at loop level, see [15] for a review. In this 
context we note that plane waves provide a testing ground for ex-
tending the double copy programme to curved backgrounds [16].

There are noticeable similarities between particle motion in 
an electromagnetic vortex [17], which is not a plane wave, and 
in certain circularly polarised gravitational waves. The latter have 
been investigated as models of the waves emitted in various astro-
physical phenomena [18,1,19]. Such waves can show an enlarged 
symmetry group containing an additional ‘screw isometry’ [20,4,5]
beyond the five common to all plane waves. Our focus here is on 
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the role played by this (and other) additional symmetries in charge 
motion, and our goal is to tie this to related results in integrable 
systems, to dynamics in electromagnetic vortices, and to the clas-
sical double copy.

This paper is organised as follows. In Sect. 2 we review the 
isometries of, and particle motion in, plane gravitational and elec-
tromagnetic waves. From the point of view of integrable systems 
these are rather special ‘superintegrable’ systems. In Sect. 3 we 
consider the screw isometry, which would seem to imply the exis-
tence of one conserved quantity too many. We resolve this, show-
ing explicitly that the implied integral of motion is not indepen-
dent of the other five. In Sect. 4 we compare charge motion in the 
screw-symmetric wave with that in an electromagnetic vortex [17], 
finding many similarities. We make the connection concrete by ob-
serving that the screw-symmetric wave is the classical double copy 
of the vortex. We discuss related cases and conclude in Sect. 5.

2. Isometries and (super)-integrable motion in plane waves

2.1. Gravitational plane waves

In order to make symmetries manifest we begin in Baldwin-
Jeffery-Rosen (BJR) coordinates {u, v, x j}, where the plane wave 
metric has the form [21,22]

gμνdxμdxν = dudv − γi j(u)dxidx j , j ∈ {1,2} . (1)

These coordinates are not global, and the γi j are constrained by 
the vacuum equations, but this will not affect our arguments. We 
will switch to globally defined coordinates later (see e.g. [7,16] for 
recent discussions and further references). The five Killing vectors 
of the metric are
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{
∂

∂xi
,2xi ∂

∂v
+ Gij(u)

∂

∂x j
,

∂

∂v

}
, where Gij(u) =

u∫
ds γ i j(s),

(2)

corresponding to invariance under the Carroll group [23] with bro-
ken rotations [24]. Now consider a test particle in this background. 
Each Killing vector implies the existence of a conserved quantity 
in the particle motion. To analyse this we use the Hamiltonian for-
malism, which requires gauging the reparameterisation invariance 
of the particle action as usual, and we take u as time [25]. The 
action and Hamiltonian are

S = −m

∫ √
gμνdxμdxν −→ H(u) = γ i j(u)pi p j + m2

4pv
, (3)

where {pv , p j} are the respective conjugate momenta to {v, x j}. 
The five conserved quantities corresponding to the five Killing vec-
tors above are

{Q 1, · · · , Q 5} := {
p j , 2xi pv + Gij(u)p j , pv

}
. (4)

The conservation of these five is enough to determine all momenta 
and x j algebraically, after which Hamilton’s equation for v may be 
integrated directly. The question we want to address is, how many 
conserved quantities can there be? To answer this we need some 
general results on integrable systems.

An autonomous Hamiltonian system with 2n-dimensional phase 
space is (polynomially) superintegrable if there exist N > n inde-
pendent phase space functions Q j (polynomial in the momenta) 
which Poisson commute with the Hamiltonian (are conserved), and 
such that n of them are in involution, {Q i, Q j} = 0 ∀ i, j ∈ {1 . . .n}. 
Systems with N = 2n − 1, the maximum possible number, are 
called maximally superintegrable [26,27]. While 2n − 1 conserved 
functions always exist locally [28], it is very rare to find systems in 
which they are globally defined polynomials in the momenta [27]. 
Superintegrable systems have many appealing properties; the clas-
sical equations of motion can admit an algebraic solution, and 
there is a conjecture that all corresponding quantum systems are 
exactly solvable [29].

A test particle in a gravitational plane wave is a superintegrable 
system; to show this, and noting that the Hamiltonian is time-
dependent, we follow the standard method of converting to an 
autonomous system1; we expand phase space to eight dimensions 
by promoting u to a coordinate with conjugate momentum pu , and 
use a new Hamiltonian K = H − pu , for a review see [32]. Writing 
a dash for a derivative with respect to a new time (which appears 
nowhere explicitly), the time-derivative of any quantity Q is

Q ′ = {K , Q }∗ where {A, B}∗ = ∂ A

∂xμ

∂ B

∂ pμ
− ∂ B

∂xμ

∂ A

∂ pμ
. (5)

In particular, we have as usual u′ = −∂ K/∂ pu = 1. Now, in general 
there is no way to know a priori if a given system is (super)inte-
grable. To derive the conserved quantities one can simply make an 
ansatz for Q (e.g. that it is quadratic in momenta) and impose (5); 
this yields a series of algebraic and differential equations deter-
mining the form of Q , see [27,33,34] for examples and references. 
In our plane wave case, this procedure yields Q 1 . . . Q 5 as in (4), 
along with two further conserved quantities; Q 6 = pu pv − pv H(u), 
which is just the mass-shell condition, and Q 7, given by

1 Alternatively, taking v to be time, rather than u, gives an autonomous system. 
However, to make connection to other cases it is more convenient if the wave de-
pends on the choice of time. The same is often true in QED calculations [30,31].

Q 7 = 4p2
v v − m2u − Gij(u)pi p j . (6)

These seven are functionally independent.2 Thus we have the max-
imum number of seven independent conserved quantities, poly-
nomial in the momenta. The system is maximally polynomially
superintegrable. The solution of the equations of motion proceeds 
algebraically from here: the three momenta are conserved, Q 4 and 
Q 5 then determine {x1, x2} as functions of time u, while Q 7 deter-
mines v .

2.2. Electromagnetic plane waves

Let us compare with electromagnetic plane waves. We work 
in lightfront coordinates {u, v, x1, x2}, the metric being (1) with 
γi j(u) → δi j . In order to make the connections with the gravita-
tional case clear we represent an arbitrary electromagnetic plane 
wave Fμν ≡ Fμν(u) using the two-component ‘BJR’ potential

A(x) = A j(u)dx j , j ∈ {1,2} . (8)

The particle action and, again taking u as time, (reparameterisa-
tion-)gauge-fixed Hamiltonian are now

S = −
∫

dτ m
√

ẋ.ẋ + ẋ.A(x) −→ H(u) = (p j − A j(u))2 + m2

4pv
.

(9)

An arbitrary electromagnetic plane wave has five isometries, 
Lξ Fμν = 0, for

ξ ∈
{

∂

∂x j
,2x j ∂

∂v
+ u

∂

∂x j
,

∂

∂v

}
, (10)

corresponding to invariance under three translations and two null 
rotations respectively. These are of course in direct analogy to (2)
and again span the Carroll group with broken rotations. Because 
these are Poincaré transformations they imply the existence of five 
conserved quantities; for ξ ≡ ξμ∂μ Poincaré we have [34]

Lξ Fμν = 0 =⇒ Q ≡ ξ(x).p − �(x) = constant,

where Lξ Aμ = ∂μ� . (11)

(The functions � appear because the potential need only be sym-
metric up to U(1) gauge transformations.) The five conserved quan-
tities following from the Poincaré symmetries of the plane wave 
(10) are

{Q 1, · · · , Q 5} =
{

p j , 2x j pv + up j − G j(u) , pv

}

for G j(u) =
u∫

ds A j(s) , (12)

in which the integrals are gauge terms � as in (11). These are 
again in analogy to (4). There are two further conserved quantities 
on expanded phase space; Q 6 is as above but with the Hamilto-
nian (3) replaced by (9), while

Q 7 = 4p2
v v − (pi pi + m2)u + 2p j G j(u) −

u∫
ds Ai(s)Ai(s) . (13)

2 Defining F = {Q 1, . . . Q N } and following [27], the N quantities Q j are func-
tionally independent if the N × 8 matrix M has rank N , where

Mlμ :=
(

∂Fl

∂xμ
,

∂Fl

∂ pμ

)
(no sum). (7)
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