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We present a generally covariant approach to quantum mechanics in which generalized positions,
momenta and time variables are treated as coordinates on a fundamental “phase-spacetime”. We show
that this covariant starting point makes quantization into a purely geometric flatness condition. This
makes quantum mechanics purely geometric, and possibly even topological. Our approach is especially
useful for time-dependent problems and systems subject to ambiguities in choices of clock or observer.

As a byproduct, we give a derivation and generalization of the Wigner functions of standard quantum

mechanics.
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1. Contact geometry

Mechanics is usually formulated in terms of an even 2n-dimen-
sional phase-space (or symplectic manifold) with time treated as
an external parameter and dynamics determined by a choice of
Hamiltonian. Yet classical physics ought not depend on choices
of clocks. However, Einstein’s principle of general covariance can
be applied to this situation by introducing an odd (2n + 1)-
dimensional phase-spacetime manifold Z. Dynamics is now en-
coded by giving Z a (strict) contact structure—i.e., a one-form «
subject to a non-degeneracy condition on the (phase-spacetime)
volume form:

Voly :=a A (da)"™ #£0. (1.1)

Physical phase-spacetime trajectories y are determined by extrem-
izing the action

S:/a. (1.2)
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Since the integral of a one-form along a path y is a coordinate
invariant quantity, general covariance (both worldline and target
space) is built in from the beginning [1]. The equations of motion
are
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(P(y:')=0, (13)

where the two-form ¢ :=do is maximal rank by virtue of Eq. (1.1)
and y is a tangent vector to the path y in Z.

The structure (Z,«) is called a (strict) contact geometry and
Eq. (1.3) determines its Reeb dynamics [2]. In addition to general
covariance, this formulation of mechanics enjoys a Darboux theo-
rem, which implies the existence of local coordinates (v, wa, x*)
such that @ = wadx? —dy (where A=1,...,n) that trivialize the
dynamics. Hence one might hope to treat classical and quantum
mechanics as contact topology problems.

2. Goal

We aim to develop a generally phase-spacetime covariant for-
mulation of quantum mechanics. We find a formulation of quan-
tum mechanics in terms of intrinsic geometric structures on a con-
tact manifold. Our approach is similar to Fedosov’s quantization of
symplectic manifolds [3], and indeed we were partly inspired by
that work and subsequent applications of Fedosov quantization to
models of higher spins [4]. Quantization based on contact geom-
etry has been studied before: For example, Rajeev [5] considers
quantization beginning with (classical) Lagrange brackets (the con-
tact analog of Poisson brackets). Fitzpatrick [6] has extended this
work to a rigorous geometric quantization setting. There is also
earlier work by Kashiwara [7] that studies sheaves of pseudodiffer-
ential operators over contact manifolds. Investigations motivated
by quantum cosmology of the so-called “clock ambiguity” in the
quantum dynamics of time reparameterization invariant theories
may be found in [8]. Contact geometry has also been employed in
studies of choices of quantum clocks in [9].
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3. BRST analysis

Because it is worldline diffeomorphism invariant, the system
with action (1.2) has one first class constraint. From the Darboux
expression for the contact form o we see that there are also 2n
second class constraints (the canonical momenta for the coordi-
nates x4 are constrained to equal the coordinates m4). The quan-
tization of constrained systems is well understood, thanks to the
seminal work of Becchi, Rouet, Stora and Tyutin (BRST) [10]. We
employ the Hamiltonian BRST technology of Batalin, Fradkin and
Vilkovisky (BFV) [11] as well as its extension to systems with sec-
ond class constraints [12]:

Let z be phase-spacetime coordinates and introduce canonical
momenta p; with Poisson brackets

i X g
{Z »p]}PB—5j~
The second class constraints are
Ci=pi—ai,

where o = a;dZ!, ¢ = J¢;jdz' Adz), and

{Ci, Cjlpe = @ij -

Second class constraints require Dirac brackets; alternatively one
may introduce 2n new variables s with Poisson brackets

{s%,s"}pp = J,
where ] is a constant, maximal rank, 2n x 2n matrix [12]. At
least locally, we can introduce 2n linearly independent soldering

forms e? (analogous to the vielbeine/tetrads of general relativity)
such that

1
(Pzijabea/\eb,

and Jgp Jb¢ = 8¢. In these terms our system is now described by an
extended action functional subject only to 2n + 1 first class con-
straints:

Sext[z(T), s(T)]
_ / (45 Japi® + 2 (@) + 8 Japei (@) + (2, 9)) [de . (31)

In the above, T is an arbitrary choice of worldline parameter, and
the s-dependent one-form w(z, s) on Z must be chosen to obey'

A2+ 1{QAQp =0,

where Q = o + s ]abeb + w, in order that the extended constraints
Cie"t = p; — §; are first class. Locally, the Darboux theorem implies
that a set of one-forms e? with a flat connection exists.

The gauge invariances

; ; ; 002
52 =gl(r),  ss"=e' ()P,
as
ensure? that the equations of motion

Fler . 02
.b . o . ]
Jab$ +Zl¥al =0=Zl(3in—3jQi)—Sa R

are equivalent to Reeb dynamics.

! Note that {Q A Q)pp :=dz' AdzJ (@i, Qj}pp. In related work, the authors of [14]
have constructed a flat Cartan Maurer connection from a central extension of the
group of canonical transformations.

2 Here we assume that the rectangular matrix % has maximal rank, which is
guaranteed at least in a neighborhood of s =0.

Now that we are dealing with a first class constrained system,
the BFV quantum action follows directly

Squ= / [@ +{Q, @}pg].

Here @ is the gauge fixing fermion for some choice of gauge and ©
is the BRST-extended symplectic current

g1 . .
O =piz + Es"]ubsb + b;ct,

where (b;,c!) are _canonically conjugate Grassmann ghosts. The
BRST charge Q = C’Cl‘?"t is determined by the first class constraints.

4. Quantization

We are now ready to quantize the contact formulation of classi-
cal mechanics. The physical picture underlying our method closely
mimics general relativity: Spinors in curved space are described by
gluing a copy of a flat space Clifford algebra and its spin repre-
sentation to each point in spacetime using vielbeine and the spin
connection to compare spinors at differing spacetime points. Math-
ematically, this is an example of a vector bundle in which context
vielbeine are called soldering forms. Here we want to glue a copy
of standard quantum mechanics to each point z in the phase-
spacetime Z, which we view as the fibers of a suitable vector
bundle, and then construct a connection V to compare differing
fibers, as depicted below:

Quantum Mechanics F'

\Y
—

Phase-spacetime Z

In this picture, quantum mechanics along the fibers is described in
terms of the variables s which are quantized in the standard way
by choosing some polarization in which

h o
fo(sn 00,
i 354

Quantum wavefunctions W(S4) depend on half the s-variables S4
spanning R", and the inner product is the usual one: (¥, V') =
fR" W*W/, The “Schrédinger equation” along each fiber as well as
the parallel transport of quantum mechanics from fiber to fiber
is controlled by the connection V given by the quantum BRST
charge Q. To compute this connection, we quantize the contact
coordinates z' and their momenta using the polarization

A h o

Pi="od-

In addition, we identify the Grassmann ghosts ¢! with a basis of
one-forms dz' along Z. Hence BRST wavefunctions now depend on
(7, dz', $*) and may be viewed as differential forms on the contact
manifold Z taking values in the Hilbert space L2(R"). The quantum
BRST charge Q= ?V where V is the operator-valued connection’

3 In fact, exactly such a connection over a symplectic manifold has been intro-
duced in [13].
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