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We present a generally covariant approach to quantum mechanics in which generalized positions, 
momenta and time variables are treated as coordinates on a fundamental “phase-spacetime”. We show 
that this covariant starting point makes quantization into a purely geometric flatness condition. This 
makes quantum mechanics purely geometric, and possibly even topological. Our approach is especially 
useful for time-dependent problems and systems subject to ambiguities in choices of clock or observer. 
As a byproduct, we give a derivation and generalization of the Wigner functions of standard quantum 
mechanics.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Contact geometry

Mechanics is usually formulated in terms of an even 2n-dimen-
sional phase-space (or symplectic manifold) with time treated as 
an external parameter and dynamics determined by a choice of 
Hamiltonian. Yet classical physics ought not depend on choices 
of clocks. However, Einstein’s principle of general covariance can 
be applied to this situation by introducing an odd (2n + 1)-
dimensional phase-spacetime manifold Z . Dynamics is now en-
coded by giving Z a (strict) contact structure—i.e., a one-form α
subject to a non-degeneracy condition on the (phase-spacetime) 
volume form:

Volα := α ∧ (dα)∧n �= 0 . (1.1)

Physical phase-spacetime trajectories γ are determined by extrem-
izing the action

S =
∫
γ

α . (1.2)

Since the integral of a one-form along a path γ is a coordinate 
invariant quantity, general covariance (both worldline and target 
space) is built in from the beginning [1]. The equations of motion 
are
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ϕ(γ̇ , ·) = 0 , (1.3)

where the two-form ϕ := dα is maximal rank by virtue of Eq. (1.1)
and γ̇ is a tangent vector to the path γ in Z .

The structure (Z , α) is called a (strict) contact geometry and 
Eq. (1.3) determines its Reeb dynamics [2]. In addition to general 
covariance, this formulation of mechanics enjoys a Darboux theo-
rem, which implies the existence of local coordinates (ψ, πA, χ A)

such that α = πAdχ A − dψ (where A = 1, . . . , n) that trivialize the 
dynamics. Hence one might hope to treat classical and quantum 
mechanics as contact topology problems.

2. Goal

We aim to develop a generally phase-spacetime covariant for-
mulation of quantum mechanics. We find a formulation of quan-
tum mechanics in terms of intrinsic geometric structures on a con-
tact manifold. Our approach is similar to Fedosov’s quantization of 
symplectic manifolds [3], and indeed we were partly inspired by 
that work and subsequent applications of Fedosov quantization to 
models of higher spins [4]. Quantization based on contact geom-
etry has been studied before: For example, Rajeev [5] considers 
quantization beginning with (classical) Lagrange brackets (the con-
tact analog of Poisson brackets). Fitzpatrick [6] has extended this 
work to a rigorous geometric quantization setting. There is also 
earlier work by Kashiwara [7] that studies sheaves of pseudodiffer-
ential operators over contact manifolds. Investigations motivated 
by quantum cosmology of the so-called “clock ambiguity” in the 
quantum dynamics of time reparameterization invariant theories 
may be found in [8]. Contact geometry has also been employed in 
studies of choices of quantum clocks in [9].
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3. BRST analysis

Because it is worldline diffeomorphism invariant, the system 
with action (1.2) has one first class constraint. From the Darboux 
expression for the contact form α we see that there are also 2n
second class constraints (the canonical momenta for the coordi-
nates χ A are constrained to equal the coordinates πA ). The quan-
tization of constrained systems is well understood, thanks to the 
seminal work of Becchi, Rouet, Stora and Tyutin (BRST) [10]. We 
employ the Hamiltonian BRST technology of Batalin, Fradkin and 
Vilkovisky (BFV) [11] as well as its extension to systems with sec-
ond class constraints [12]:

Let zi be phase-spacetime coordinates and introduce canonical 
momenta pi with Poisson brackets

{zi, p j}PB = δi
j .

The second class constraints are

Ci = pi − αi ,

where α = αidzi , ϕ = 1
2 ϕi jdzi ∧ dz j , and

{Ci, C j}PB = ϕi j .

Second class constraints require Dirac brackets; alternatively one 
may introduce 2n new variables sa with Poisson brackets

{sa, sb}PB = J ab ,

where J is a constant, maximal rank, 2n × 2n matrix [12]. At 
least locally, we can introduce 2n linearly independent soldering 
forms ea (analogous to the vielbeine/tetrads of general relativity) 
such that

ϕ = 1

2
Jabea ∧ eb ,

and Jab J bc = δc
a . In these terms our system is now described by an 

extended action functional subject only to 2n + 1 first class con-
straints:

Sext[z(τ ), s(τ )]
=

∫ [
1
2 sa Jab ṡb + żi(αi(z) + sa Jabei

b(z) + ωi(z, s)
)]

dτ . (3.1)

In the above, τ is an arbitrary choice of worldline parameter, and 
the s-dependent one-form ω(z, s) on Z must be chosen to obey1

d� + 1
2 {� ∧ �}PB = 0 ,

where � = α + sa Jabeb +ω, in order that the extended constraints 
Cext

i = pi − �i are first class. Locally, the Darboux theorem implies 
that a set of one-forms ea with a flat connection exists.

The gauge invariances

δzi = εi(τ ) , δsa = εi(τ ) J ab ∂�i

∂sb
,

ensure2 that the equations of motion

Jab ṡb + żi ∂�i

∂sa
= 0 = żi(∂i� j − ∂ j�i

) − ṡa ∂� j

∂sa
,

are equivalent to Reeb dynamics.

1 Note that {� ∧ �}PB := dzi ∧ dz j {�i , � j}PB. In related work, the authors of [14]
have constructed a flat Cartan Maurer connection from a central extension of the 
group of canonical transformations.

2 Here we assume that the rectangular matrix ∂�i
∂sb has maximal rank, which is 

guaranteed at least in a neighborhood of s = 0.

Now that we are dealing with a first class constrained system, 
the BFV quantum action follows directly

Squ =
∫ [

� + {Q ,�}PB
]
.

Here � is the gauge fixing fermion for some choice of gauge and �

is the BRST-extended symplectic current

� = pi ż
i + 1

2
sa Jab ṡb + biċ

i ,

where (bi, ci) are canonically conjugate Grassmann ghosts. The 
BRST charge Q = ci Cext

i is determined by the first class constraints.

4. Quantization

We are now ready to quantize the contact formulation of classi-
cal mechanics. The physical picture underlying our method closely 
mimics general relativity: Spinors in curved space are described by 
gluing a copy of a flat space Clifford algebra and its spin repre-
sentation to each point in spacetime using vielbeine and the spin 
connection to compare spinors at differing spacetime points. Math-
ematically, this is an example of a vector bundle in which context 
vielbeine are called soldering forms. Here we want to glue a copy 
of standard quantum mechanics to each point z in the phase-
spacetime Z , which we view as the fibers of a suitable vector 
bundle, and then construct a connection ∇ to compare differing 
fibers, as depicted below:

In this picture, quantum mechanics along the fibers is described in 
terms of the variables sa which are quantized in the standard way 
by choosing some polarization in which

ŝa =
(

S A,
h̄

i

∂

∂ S A

)
.

Quantum wavefunctions �(S A) depend on half the s-variables S A

spanning Rn , and the inner product is the usual one: 〈�, �′〉 =∫
Rn �∗�′ . The “Schrödinger equation” along each fiber as well as 

the parallel transport of quantum mechanics from fiber to fiber 
is controlled by the connection ∇ given by the quantum BRST 
charge Q̂ . To compute this connection, we quantize the contact 
coordinates zi and their momenta using the polarization

p̂i = h̄

i

∂

∂zi
.

In addition, we identify the Grassmann ghosts ci with a basis of 
one-forms dzi along Z . Hence BRST wavefunctions now depend on 
(zi, dzi, S A) and may be viewed as differential forms on the contact 
manifold Z taking values in the Hilbert space L2(Rn). The quantum 
BRST charge Q̂ = h̄

i ∇ where ∇ is the operator-valued connection3

3 In fact, exactly such a connection over a symplectic manifold has been intro-
duced in [13].
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