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We study the system of static scalar fields coupled to charged compact reflecting stars through both 
analytical and numerical methods. We enclose the star in a box and our solutions are related to cases 
without box boundaries when putting the box far away from the star. We provide bottom and upper 
bounds for the radius of the scalar hairy compact reflecting star. We obtain numerical scalar hairy star 
solutions satisfying boundary conditions and find that the radius of the hairy star in a box is continuous 
in a range, which is very different from cases without box boundaries where the radius is discrete in the 
range. We also examine effects of the star charge and mass on the largest radius.
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1. Introduction

The no-scalar-hair theorem is a famous physical characteristic 
of black holes [1–3]. It was found that the static massive scalar 
fields cannot exist in asymptotically flat black holes, for refer-
ences see [4–15] and a review see [16]. This property is usually 
attributed to the fact that the horizon of a classical black hole ir-
reversibly absorbs matter and radiation fields. Along this line, one 
naturally want to know whether this no scalar hair behavior is a 
unique property of black holes. So it is interesting to explore pos-
sible similar no scalar hair theorem in other horizonless curved 
spacetimes.

Lately, hod found a no-scalar-hair theorem for asymptotically 
flat horizonless neutral compact reflecting stars with a single mas-
sive scalar field and specific types of the potential [17]. Bhattachar-
jee and Sudipta further extended the discussion to spacetimes with 
a positive cosmological constant [18]. In fact, the no scalar hair 
behavior also exists for massless scalar field nonminimally cou-
pled to gravity on the neutral compact reflecting star background 
[19]. Recently, scalar field configurations were constructed in the 
charged compact reflecting shell where the star charge and mass 
can be neglected compared to the star radius [20,21]. With ana-
lytical methods, the physical properties of the asymptotically flat 
composed star-field configurations were also analyzed in [22]. In 
particular, this work derived a remarkably compact analytical for-
mula for the discrete spectrum of star radii. Along this line, it is 
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interesting to extend the discussion by relaxing the condition that 
star radii are much larger than the star charge and mass.

On the other side, a simple way to invade the black hole no-
scalar-hair theorem is adding a reflecting box boundary. It should 
be emphasized that the boundary conditions imposed by a box 
are different from the familiar boundary conditions of asymptoti-
cally flat spacetimes. In fact, it was found that the low frequency 
scalar field perturbation can trigger superradiant instability of the 
charged black hole in a box and the nonlinear dynamical evolution 
can form a quasi-local hairy black hole [23–26]. From thermody-
namical aspects, Pallab and other authors showed that there are 
stable asymptotically flat hairy black holes in a box invading no-
hair-theorem of black holes [27]. It was believed that the box 
boundary could play a role of the infinity potential to make the 
fields bounce back and condense around the black hole. Along this 
line, it is interesting to extend the discussion of scalar field config-
urations supported by a compact reflecting star through including 
an additional box boundary and also compare mathematical struc-
tures between gravities without box boundaries and models in a 
box.

The next sections are planed as follows. In section 2, we intro-
duce the model of a charged compact reflecting star coupled to 
a scalar field. In section 3.1, we provide bounds for the radius of 
the scalar hairy star. In section 3.2, we obtain radius of the hairy 
star and explore effects of parameters on the largest radius. And 
in section 3.3, we also carry out an analytical study of the system 
in the limit that star charge and mass can be neglected. We will 
summarize our main results in the last section.
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2. Equations of motion and boundary conditions

We consider the system of a scalar field and a compact re-
flecting star enclosed in a time-like reflecting box at r = rb in the 
four dimensional asymptotically flat gravity. When rb → ∞, we go 
back to the case without box boundaries. We also define the ra-
dial coordinate r = rs as the radius of the compact star. And the 
corresponding Lagrange density is given by

L = −1

4
F MN F MN − |∇μψ − q Aμψ |2 − μ2ψ2, (1)

where q and μ are the charge and mass of the scalar field ψ(r)
respectively. And Aμ stands for the ordinary Maxwell field.

Using the Schwarzschild coordinates, the line element of the 
spherically symmetric star can be expressed in the form [28]

ds2 = −(1 − 2M

r
+ Q 2

r2
)dt2 + dr2

1 − 2M
r + Q 2

r2

+ r2(dθ2 + sin2θdϕ2), (2)

where M is the mass of the star and Q is the charge of the star. 
In this paper, we only study the case of M � Q . Since the space-
time is regular, we also assume that rs > M +

√
M2 − Q 2. And the 

Maxwell field with only the nonzero tt component is Aμ = − Q
r dt .

For simplicity, we study the scalar field with only radial depen-
dence in the form ψ = ψ(r). From above assumptions, we obtain 
equations of motion as

ψ ′′ + (
2

r
+ g′

g
)ψ ′ + (

q2 Q 2

r2 g2
− μ2

g
)ψ = 0, (3)

with g = 1 − 2M
r + Q 2

r2 .
In addition, we impose reflecting boundary conditions for the 

scalar field at the surface of the compact star. We also suppose 
that the time-like box boundary r = rb can reflect the scalar field 
back. So the scalar field vanishes at the boundaries as

ψ(rs) = 0, ψ(rb) = 0. (4)

3. Scalar field configurations in charged compact reflecting stars

3.1. Bounds for the radius of the scalar hairy compact star

Defining the new radial function ψ̃ = √
rψ , one obtains the dif-

ferential equation

r2ψ̃ ′′ + (r + r2 g′

g
)ψ̃ ′ + (−1

4
− rg′

2g
+ q2 Q 2

g2
− μ2r2

g
)ψ̃ = 0, (5)

with g = 1 − 2M
r + Q 2

r2 .
According to the boundary conditions (4), one deduce that

ψ̃(rs) = 0, ψ̃(rb) = 0. (6)

The function ψ̃ must have (at least) one extremum point r =
rpeak between the surface rs of the reflecting star and the box 
boundary rb (including cases of rb = ∞). At this extremum point, 
the scalar field is characterized by

{ψ̃ ′ = 0 and ψ̃ψ̃ ′′ � 0} for r = rpeak. (7)

According to the relations (5) and (7), we arrive at the inequal-
ity

−1

4
− rg′

2g
+ q2 Q 2

g2
− μ2r2

g
� 0 for r = rpeak. (8)

Then we have

μ2r2 g � q2 Q 2 − rgg′

2
− 1

4
g2 for r = rpeak. (9)

Since r � rs > M +
√

M2 − Q 2 � M � Q , we have

g = 1 − 2M

r
+ Q 2

r2
= 1

r2
(r2 − 2Mr + Q 2)

= 1

r2
[(r − M)2 − (M2 − Q 2)]� 0, (10)

rg′ = r(1 − 2M

r
+ Q 2

r2
)′ = r(

2M

r2
− 2Q 2

r3
)

= 2M

r
(1 − Q

r

Q

M
) � 0 (11)

and

(r2 g)′ = (r2 − 2Mr + Q 2)′ = 2(r − M)� 0. (12)

Then we arrive at

μ2r2
s g(rs) �μ2r2 g(r) � q2 Q 2 − rgg′

2
− 1

4
g2 � q2 Q 2

for r = rpeak. (13)

According to (13), there is

μ2r2
s g(rs) � q2 Q 2. (14)

Taking cognizance of the metric solutions, (14) can also be ex-
pressed as

μ2r2
s (1 − 2M

rs
+ Q 2

r2
s

) � q2 Q 2. (15)

Then, we can transfer (15) into the form

(μrs)
2 − (2μM)(μrs) + Q 2(μ2 − q2)� 0. (16)

Then, we obtain bounds for the radius of the scalar hairy com-
pact reflecting star as

μM +
√

μ2(M2 − Q 2) < μrs

�μM +
√

μ2(M2 − Q 2) + q2 Q 2. (17)

The bottom bound comes from the assumption that the space-
time is regular or rs > M +

√
M2 − Q 2 and the upper bound can 

be obtained from (16). For a neutral scalar field with q = 0, (17)
shows that the upper bound is behind a horizon meaning a no-
hair-theorem for the neutral scalar field in a charged reflecting star. 
So it is the coupling qQ makes the upper bound larger than the 
horizon critical points and then the scalar hair can possibly exist 
in this regular spacetime.

3.2. Scalar field configurations in a curved spacetime

The scalar field configurations with charged reflecting stars 
were studied in the limit of Q , M � rs [20–22]. In this part, we 
will extend the discussion by relaxing the condition Q , M � rs . 
We can simply set μ = 1 in the following calculation using the 
symmetry of the equation (3) in the form

r → kr, μ → μ/k, M → kM, Q → kQ , q → q/k. (18)

Around the star surface, the scalar field can be expanded as ψ =
ψ0(r − rs) + · · · . Since the scalar field equation is linear and ho-
mogeneous with respect to ψ , we can fix ψ0 = 1 and use the 
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