
Physics Letters B 780 (2018) 418–421

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Perturbative Yang–Mills theory without Faddeev–Popov ghost fields

Helmuth Huffel, Danijel Markovic

Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 February 2018
Received in revised form 23 February 2018
Accepted 13 March 2018
Available online 14 March 2018
Editor: N. Lambert

A modified Faddeev–Popov path integral density for the quantization of Yang–Mills theory in the 
Feynman gauge is discussed, where contributions of the Faddeev–Popov ghost fields are replaced by 
multi-point gauge field interactions. An explicit calculation to O (g2) shows the equivalence of the usual 
Faddeev–Popov scheme and its modified version.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Faddeev and Popov [1] proposed a highly acclaimed path in-
tegral quantization procedure for Yang–Mills theory. Yang–Mills 
theory is a gauge theory based on compact simple Lie groups. 
It forms the basis of our understanding of the Standard Model 
of particle physics [2–4], which has two basic components: The 
spontaneously broken SU (2) × U (1) electroweak theory, and the 
unbroken SU(3) color gauge theory, known as Quantum Chromo-
dynamics (QCD).

Although electromagnetism and the weak interactions (respon-
sible for the forces between sub-atomic particles that cause ra-
dioactive decay) appear quite different at everyday low energies, 
the Standard Model understands them as two different aspects of 
the same force. The Higgs mechanism [5–9] provides an expla-
nation for the presence of massive gauge bosons (the carriers of 
the weak force) aside of the massless photon (the carrier of the 
electromagnetic force). The discoveries of the massive W ± and Z
gauge bosons at the CERN p̄p collider [10–13] as well as of the 
Higgs particle at the Large Hadron Collider [14,15] are considered 
as major successes for the European Organization for Nuclear Re-
search.

QCD is the theory which describes the strong interactions be-
tween massive quarks and massless gluons (responsible for binding 
neutrons and protons to create atomic nuclei). QCD exhibits two 
main properties, asymptotic freedom [16,17] and color confine-
ment. Asymptotic freedom refers to the weakness of the strong 
interactions at short-distances (or high energies, respectively). It 
allows a perturbative treatment, which is often referred to as per-
turbative QCD. Hereby high energy hadronic processes involving a 
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large momentum transfer can be factorized into one part which 
requires detailed nonperturbative information on parton distribu-
tion functions and into a second part, which is calculable us-
ing perturbation theory. Parton distribution functions (specifying 
how hadrons are built out of quarks and gluons) have to be ex-
tracted from data and are available from various groups worldwide. 
The perturbative part of the calculation is done in an expansion 
in the coupling constant. In this context, we especially mention 
results at next-to-leading order [18], next-to-next-to-leading or-
der [19–22], even next-to-next-to-next-to-leading order [23,24], as 
well as calculations supplemented with resummations of logarith-
mic contributions [25,26]. Confinement is the phenomenon of non-
observation of color charged particles like free quarks or gluons 
and is believed to follow from the strength of the QCD coupling 
constant at long distances (or low energies, respectively). It should 
be remarked, however, that presently there is no analytic proof 
of color confinement in Yang–Mills theory. Confinement is crucial 
for explaining why nuclear forces are short ranged while massless 
gluon exchange would be long ranged: Nucleons are colorless so 
they cannot exchange colored gluons but only colorless states. The 
lightest such particles are pions, which fixes the range of nuclear 
forces by the inverse of their mass to about 10−14 cm.

Upon quantizing Yang–Mills theory new fields are introduced, 
called Faddeev–Popov ghost fields, which are associated to the 
gauge fixing. Mathematically, ghost fields allow for an integral 
representation of the Faddeev–Popov determinant (see below) in 
terms of a local action functional. The ghost fields are Lorentz 
scalars but obey Fermi statistics, they are arising inside Feyn-
man diagrams in closed loops only. The ghosts’ unphysical degrees 
of freedom are needed to exactly cancel unphysical polarization 
states of the gauge field, leading to a unitary theory. The proof of 
unitarity relies on the Slavnov–Taylor identities [27,28], which in 
turn play a key role in the proof of the renormalizability [29,30]
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of Yang–Mills theories. The Slavnov–Taylor identities led Becchi, 
Rouet and Stora [31,32] and, independently, Tyutin [33] to discover 
a global supersymmetry invariance of the gauge fixed Yang–Mills 
action including the ghost contributions.

The perturbation theory of Yang–Mills theory as developed by 
Faddeev–Popov, the property of asymptotic freedom and renormal-
izability are at the heart of the Standard Model of elementary 
particle physics.

In this paper a modified Faddeev–Popov path integral quantiza-
tion of Yang–Mills theory is presented, where contributions of the 
Faddeev–Popov ghost fields are replaced by multi-point gauge field 
interactions. This is a new formulation of quantum Yang–Mills the-
ory without the use of Grassman-valued fields.

2. Local features of Yang–Mills theory

Let A be the space of Yang–Mills fields and G the gauge group 
(for a detailed mathematical account of the involved space we 
refer to [34–36]). Then G defines a principal G-bundle A π−→
A/G =: M over the space M of all inequivalent gauge poten-
tials with projection π . M represents the true degrees of freedom. 
However, the principal G-bundle A→M is not globally trivializ-
able [34–36], giving rise to the so-called Gribov ambiguity [37] (for 
a recent review see [38]).

It is advantageous to separate the Yang–Mills fields Aμ into 
gauge independent and gauge dependent degrees of freedom. As 
this is only locally possible due to the non triviality of the bundle 
A→M, we consider the trivializable bundle π−1(U ) → U , where 
U denotes a sufficiently small neighborhood in M.

Under a gauge transformation � ∈ G the Yang–Mills field trans-
forms according to

A�
μ = � Aμ �−1 − i

g
(∂μ�)�−1, (1)

where g denotes the Yang–Mills coupling constant. In terms of the 
local gauge fixing surface

� = {Bμ ∈ π−1(U ) | ∂μBμ = 0} (2)

all gauge fields in π−1(U ) have the form B�
μ , where Bμ ∈ � and 

� ∈ G . Conversely, given any Aμ ∈ π−1(U ), there exists a uniquely 
defined �(A) ∈ G such that A�(A)−1

μ ∈ �. This explicitly means that 
�(A) has to obey

0 = ∂μ(�(A)−1 Aμ �(A)) − i

g
∂μ((∂μ�(A)−1)�(A)). (3)

This equation may be solved for �(A) as a formal power series in 
the gauge field Aμ [39–42], which will be used in the next section.

3. Perturbative Yang–Mills theory without Faddev–Popov ghost 
fields

To begin with, let us recall the usual Faddeev–Popov formula [1]
for calculating expectation values of gauge invariant observables f

〈 f 〉 =
∫
DA δ(∂μ Aμ) detFA e−S inv[A] f (A)∫

DA δ(∂μ Aμ) detFA e−S inv[A] , (4)

displaying integrations over unconstrained gauge fields Aμ ∈
π−1(U ) and delta functions imposing the gauge fixing condi-
tion. Here detFA = det ∂μDμ(A) denotes the determinant of the 
Faddeev–Popov operator and Dμ(A) is the covariant derivative 
with respect to Aμ . The gauge invariant Yang–Mills action S inv[A]
reads

S inv[A] = 1

2

∫
ddx Tr

(
Fμν Fμν

)
(5)

and is defined in terms of the field strength

Fμν = ∂μ Aν − ∂ν Aμ − ig[Aμ, Aν ]. (6)

Note that in order to arrive at the Faddeev–Popov formula [1] an 
infinite gauge group volume had to be canceled between the nu-
merator and denumerator of the expression (4).

We prefer to represent the Faddeev–Popov formula (4) in the 
equivalent form [43,44]

〈 f 〉 =
∫
DB detFB e−S inv[B] f (B)∫

DB detFB e−S inv[B] , (7)

where the path integral is performed over constrained gauge fields 
Bμ ∈ �, and where detFB = det ∂μDμ(B) denotes the determinant 
of the Faddeev–Popov operator with respect to Bμ .

Inspired by the stochastic quantization scheme [45–47] a gen-
eralization of the Faddeev–Popov formula was proposed in [48], 
where

〈 f 〉 =
∫
DB detFB e−S inv[B] f (B)∫

DB detFB e−S inv[B]

∫
D� e−SG [�]∫
D� e−SG [�] . (8)

Here SG ∈ C∞(G) is an arbitrary functional on G , such that e−SG

is integrable with respect to the invariant measure D� on G . For 
different modifications of the Faddeev–Popov formula see [40,49].

When evaluated on gauge invariant observables all additional 
finite contributions of the gauge degrees of freedom due to SG
cancel out, therefore the generalized definition (8) of expectation 
values equals (7), which in turn is equivalent to the usual Faddeev–
Popov formula (4).

It is our intention, however, not to cancel these finite contri-
butions, but to transform the fields Bμ ∈ � and � ∈ G back into 
the original variables Aμ ∈ π−1(U ). In this case the Jacobian of the 
field transformation eliminates the Faddeev–Popov determinant, so 
we obtain [48]

〈 f 〉 =
∫
DA e−S inv[A]−SG [�(A)] f (A)∫

DA e−S inv[A]−SG [�(A)] . (9)

Mind that now the path integral is performed over unconstrained 
gauge fields Aμ ∈ π−1(U ), similarly as in (4). Due to the absence 
of the Faddeev–Popov determinant, however, Faddeev–Popov ghost 
fields are not present any longer.

In this work we suggest to specify SG as

SG[�(A)] = 1

g2

∫
ddx Tr

(
(∂μθ(A)μ)(∂νθ(A)ν)†

)
, (10)

where

θ(A)μ = (∂μ�(A)−1)�(A) (11)

is defined in terms of �(A).
To accommodate in SG [�(A)] the explicit expression for �(A)

is an involved task and can only be achieved in a perturbative 
expansion in the coupling constant g . Although SG [�(A)] is de-
pending on the gauge fields Aμ in a highly intricate manner, 
the path integral (9) itself is performed over unconstrained gauge 
fields Aμ ∈ π−1(U ).

It will be seen that our choice for SG is implying gauge field 
propagators in the Feynman gauge. In a sequel paper we plan to 
study also the covariant ξ -gauges as well as the limiting ξ → 0
case of the Landau gauge, when multiplying SG by the inverse of 
a gauge fixing parameter ξ .
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