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Nonminimal spin-gravity interaction through unit gravimagnetic moment leads to modified Mathisson–
Papapetrou–Tulczyjew–Dixon equations with improved behavior in the ultrarelativistic limit. We present 
exact Hamiltonian of the resulting theory and compute an effective 1

c2 -Hamiltonian and leading post-
Newtonian corrections to the trajectory and spin. Gravimagnetic moment causes the same precession 
of spin S as a fictitious rotation of the central body with angular momentum J = M

m S. So the modified 
equations imply a number of qualitatively new effects, that could be used to test experimentally, whether 
a rotating body in general relativity has null or unit gravimagnetic moment.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

The manifestly generally covariant Mathisson–Papapetrou–
Tulczyjew–Dixon (MPTD) equations [1–6] are widely used to de-
scribe a rotating test body in general relativity in pole–dipole 
approximation. In the current literature (see [7–12] and references 
therein), they usually appear in the form given by Dixon

∇ Pμ = −1

4
θμν ẋν , ∇ Sμν = 0 , (1)

where θμν = Rμναβ Sαβ is the gravitational analogy of the electro-
magnetic field strength Fμν [7,13]. (Our spin-tensor Sμν is twice 
of that of Dixon. Besides, in the last equation we omitted the term 
2P [μ ẋν] , which does not contribute in 1

c2 -approximation we are 
interested in the present work. Concerning other notation, see the 
footnote.1) Together with the spin supplementary condition2
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1 Our variables are taken in arbitrary parametrization τ , then ẋμ = dxμ

dτ and the 
covariant derivative is ∇ωμ = dωμ

dτ + �
μ
αβ ẋαωβ . The square brackets mean antisym-

metrization, ω[μπν] = ωμπν − ωνπμ . We often miss the four-dimensional indexes 
and use the notation ẋμNμν ẋν = ẋNẋ, Nμ

ν ẋν = (Nẋ)μ , ω2 = gμνω
μων , μ, ν =

0, 1, 2, 3, sign gμν = (−, +, +, +). Suppressing the indexes of three-dimensional 
quantities, we use bold letters. The tensor of Riemann curvature is Rσ

λμν =
∂μ�σ

λν − ∂ν�σ
λμ + �σ

βμ�β
λν − �σ

βν�β
λμ .

2 While the Lagrangian and Hamiltonian formalisms dictate [14] the condition 
(2), in the multipole approach there is a freedom in the choice of a spin supple-
mentary condition, related with the freedom to choose a representative point of 
the body [3,4,6]. Different conditions lead to the same results for observables in 
1
c2 -approximation, see [36,5,42].

Sμν Pν = 0, (2)

MPTD equations prescribe the evolution of both trajectory and spin 
of the body in 1/c2-approximation.

Starting from the pioneer works, MPTD equations were con-
sidered as a Hamiltonian-type system. Following this spirit in the 
recent work [15], we explicitly realized this idea by constructing 
the minimal interaction with gravity in the Lagrangian of vector 
model of spinning particle, and showed that this indeed leads to 
MPTD equations in the Hamiltonian formalism. This allowed us to 
study the ultrarelativistic limit in exact equations for the trajectory 
of MPTD particle in the laboratory time. Using the Landau–Lifshitz 
(1 + 3)-decomposition [16] we observed that, unlike a geodesic 
equation, the MPTD equations lead to the expression for three-
acceleration which contains divergent terms as v → c [13]. There-
fore it seems interesting to find a generalization of MPTD equations 
with improved behavior in the ultrarelativistic regime. This can be 
achieved, if we add a nonminimal spin-gravity interaction through 
gravimagnetic moment κ [13]. κ = 0 corresponds to the MPTD 
equations. The most interesting case turns out to be κ = 1 (gravi-
magnetic body). Keeping only the terms, which may contribute in 
the leading post-Newtonian approximation, this gives the modified 
equations (among other equations, see below)

∇ Pμ = −1

4
θμν ẋν −

√−ẋ2

32mc
(∇μθσλ)Sσλ ,

∇ Sμν =
√−ẋ2

4mc
θ [μ

α Sν]α . (3)
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Comparing (3) with (1), we see that unit gravimagnetic mo-
ment yields quadratic in spin corrections to MPTD equations in 
1
c2 -approximation.

Both acceleration and spin torque of gravimagnetic body have 
reasonable behavior in ultrarelativistic limit [13]. In the present 
work we study the modified equations and the corresponding ef-
fective Hamiltonian in the regime of small velocities, and com-
pute 1

c2 -corrections due to the extra-terms appeared in (3). In 
Schwarzschild and Kerr space–times, the modified equations pre-
dict a number of qualitatively new effects, that could be used to 
test experimentally, whether a rotating body in general relativity 
has null or unit gravimagnetic moment.

Let us briefly describe the variational problem which implies 
the modified equations (3). In the vector model of spin presented 
in [17], the configuration space consist of the position of the par-
ticle xμ(τ ), and the vector ωμ(τ ) attached to the point xμ(τ ). 
Minimal interaction with gravity is achieved by direct covarianti-
zation of the free action, initially formulated in Minkowski space. 
That is we replace ημν → gμν , and usual derivative of the vec-
tor ωμ by the covariant derivative: ω̇μ → ∇ωμ . The nonminimal 
spin-gravity interaction through the gravimagnetic moment κ can 
be thought as a deformation of original metric: gμν → σμν =
gμν + κ Rα

μ
β
νωαωβ , with the resulting Lagrangian action [13]

S = −
∫

dτ

√
(mc)2 − α

ω2

× √−ẋN Kσ Nẋ − ∇ωN K N∇ω + 2λẋN K N∇ω. (4)

We have denoted K = (σ −λ2 g)−1, where λ is the only Lagrangian 
multiplier in the theory. The matrix Nμν ≡ gμν − ωμων

ω2 is a pro-
jector on the plane orthogonal to ω: Nμνω

ν = 0. The parameter α
determines the value of spin, in particular, α = 3h̄2

4 corresponds 
to the spin one-half particle. In the spinless limit, ωμ = 0 and 
α = 0, Eq. (4) reduces to the standard Lagrangian of a point parti-
cle, −mc

√−gμν ẋμ ẋν .
The action (4) is manifestly invariant under general-coordinate 

transformations as well as under reparametrizations of the evo-
lution parameter τ . Besides, there is one more local symmetry, 
which acts in the spin-sector and called the spin-plane symme-
try: the action remains invariant under rotations of the vectors ωμ

and πμ = ∂L
∂ω̇μ in their own plane [18]. Being affected by the local 

transformation, these vectors do not represent observable quanti-
ties. But their combination

Sμν = 2(ωμπν − ωνπμ) = (Si0 = Di, Sij = 2εi jk Sk), (5)

is an invariant quantity, which represents the spin-tensor of the 
particle. In Eq. (5), we decomposed the spin-tensor into three-
dimensional spin-vector S = 1

2 (S23, S31, S12), and dipole electric 
moment [19] Di .

For the general-covariant and spin-plane invariant variables xμ , 
Pμ = pμ − �

β
αμωαπβ and Sμν (here pμ = δS

δẋμ ), the Hamiltonian 
equations of motion of the theory (4) acquire especially simple 
form when κ = 1. In 1

c2 -approximation, we obtained the equa-
tions (3), accompanied by the Hamiltonian equation for xμ , ẋμ =√

−ẋ2

mc Pμ , the latter can be identified with velocity–momentum 
relation implied by MPTD equations [13]. Besides the dynamical 
equations, the variational problem (4) implies the mass-shell con-
straint

T ≡ P 2 + κ

16
θμν Sμν + (mc)2 = 0, (6)

and the spin-sector constraints Pω = 0, Pπ = 0, ωπ = 0 and 
π2 − α

ω2 = 0. Their meaning becomes clear if we consider their 

effect over the spin-tensor. The second-class constraints Pω = 0
and Pπ = 0 imply the spin supplementary condition (2), while 
the remaining first-class constraints fix the value of square of the 
spin-tensor, Sμν Sμν = 8α. The equations imply that only two com-
ponents of spin-tensor are independent, as it should be for an 
elementary spin one-half particle. The mass-shell constraint (6)
look like that of a spinning particle with gyromagnetic ratio g , 
P 2 − eg

c Fμν Sμν + (mc)2 = 0. In view of this similarity, the inter-
action constant κ has been called gravimagnetic moment [20,7].

Although the vector model of spin has been initially devel-
oped to describe an elementary particle of spin one-half, it can be 
adopted to study a rotating body in general relativity. The action 
(4) with κ = 0 implies MPTD equations, and the only difference 
among two formalisms is that values of momentum and spin are 
conserved quantities of MPTD equations, while in the vector model 
they are fixed by constraints. In summary [13], to study the class 
of trajectories of a body with 

√−P 2 = k and S2 = β , we can use 
our spinning particle with m = k

c and α = β
8 .

Although the post-Newtonian approximation can be obtained 
by direct computations on the base of equations of motion, we 
prefer to work with an approximate Hamiltonian. This gives a 
more transparent picture of nonminimal interaction, in particular, 
display strong analogy with a spinning particle with magnetic mo-
ment in electromagnetic background. We could consider a Hamil-
tonian corresponding to either Poisson or Dirac brackets. We work 
with Dirac bracket3 for the second-class constraints Pω = 0 and 
Pπ = 0, since in this case the relativistic Hamiltonian acquires 
the conventional form Hrel = λ

2 T . According to the procedure de-
scribed in [21], exact Hamiltonian for dynamical variables x(t), p(t)

and S(t) as functions of the coordinate time t = x0

c is H = −cp0, 
where the conjugated momentum p0 is a solution to the mass-
shell constraint (6). Solving the constraint, we obtain

H = c√−g00

√
(mc)2 + γ i j P i P j + 1

16
(θ S)

− cπμ�μ
0νω

ν + cg0i

g00
Pi, (7)

where γ i j = gij − g0i g0 j

g00 . Let us consider a stationary, asymptot-

ically flat metric of a spherical body with mass M and angular 
momentum J. In the post-Newtonian approximation up to order 
1
c4 , this reads [26]

ds2 =
(

−1 + 2GM

c2r
− 2G2M2

c4r2

)
(dx0)2

− 4G
εi jk J jxk

c3r3 dx0dxi +
(

1 + 2GM

c2r
+ 3G2M2

2c4r2

)
dxidxi . (8)

To obtain the effective Hamiltonian, we expand all quantities in (7)
in series up to 1

c2 -order. To write the result in a compact form, we 
introduce the vector potential A J = 2G

c [J × r
r3 ] for the gravitomag-

netic field B J = [∇×A J ] = 2G
c

3(J·r̂)r̂−J
r3 , produced by rotation of cen-

tral body (we use the conventional factor 2G
c , different from that 

of Wald [31]. In the result, our B J = 4BW ald). Besides we define 
the vector potential AS = M

m
G
c [S × r

r3 ] of fictitious gravitomagnetic 
field BS = [∇ × AS ] = M

m
G
c

3(S·r̂)r̂−S
r3 due to rotation of a gyroscope, 

3 The Dirac bracket turns the spinning particle into intrinsically noncommutative 
theory. This could manifest itself in various applications [22–24]. In particular, our 
Hamiltonian differs from those suggested by other groups, for instance [25]. They 
have been compared in [15].
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