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The evolution of an infinite population of interacting point entities placed in Rd is studied. The 
elementary evolutionary acts are death of an entity with rate that includes a competition term 
and independent fission into two entities. The population states are probability measures on the 
corresponding configuration space and the result is the construction of the evolution of states in the class 
of sub-Poissonian measures, that corresponds to the lack of clusters in such states. This is considered as 
a self-regulation in the population due to competition.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Regulating population dynamics

Simple population dynamics models are mostly based on two 
evolutionary acts: disappearance (death) of an entity and procre-
ation, in the course of which new entities join the population. 
A commonly accepted viewpoint on the evolution of a finite pop-
ulation of this kind is that it either dies out or grows ad in-
finitum being unhampered by habitat restrictions. Clearly, such 
restrictions can only be ignored if the population size is small, 
i.e., at the early stage of its development. In developed popula-
tions, environmental restrictions force the entities to compete with 
each other – a crowding effect. In the mentioned models, this ef-
fect manifests itself in a state-dependent increment of the death 
toll. In Verhulst’s phenomenological theory based on the equation 
d
dt N = λN − (μ + αN)N , such an increment is αN . Here N = N(t)
is the (expected) number of entities at time t , and positive λ and 
μ are the intrinsic procreation and death rates, respectively. Later 
on, Pearl and Reed rewrote this in the form of the logistic growth 
equation d

dt N = rN(1 − N/K ) with r = λ − μ and K = r/α. The 
latter parameter gives rise to the notion of carrying capacity as 
the solution N ≡ K is a stationary one, to which N(t) tends in 
the limit t → +∞. Since then, this notion is used in the the-
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ory of biological populations, see Introduction in [1], and not only 
in the context of the competition caused crowding effect. For in-
stance, in the Galton–Watson model with binary fission considered 
in [2], the probability of fission of a member of generation n con-
sisting of Zn entities was taken to be K/(K + Zn). Thereby, the 
constructed process gets super- or subcritical under or over the 
level K , respectively. This aspect of the theory may be viewed as 
a phenomenological (mean-field-like) way of regulating the popu-
lation dynamics. Here regulating means preventing the population 
from infinite growth and mean-field corresponds to imitating inter-
actions as state-dependent external actions (fields), cf. [6, Sect. 13].

In the theory of populations with interactions explicitly taken 
into account, a usual assumption is that each entity interacts 
mostly (or even entirely) with the subpopulation located in a com-
pact subset of the habitat. Then the local structure of the popula-
tion is determined by the network of such interactions. Since a 
finite population occupies a compact set, it is always local as each 
of its members has a compact neighborhood containing the whole 
remaining population. Thus, in order to understand the global be-
havior of populations of this kind, one should take them infinite. 
In the statistical mechanics of interacting physical particles de-
veloped from phenomenological thermodynamics, this conclusion 
had led to the concept of the infinite-volume limit, see, e.g., [6, 
pp. 5, 6]. In this note, and in the accompanying paper [4] where 
all the technical details are presented, we introduce an individual-
based model of an infinite population of point entities placed in 
R

d which undergo binary fission and death caused also by crowd-
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ing (local competition). Its aim is to demonstrate that the local 
competition – interaction explicitly taken into account – can pro-
duce a global regulating effect. Here, however, one has to make 
precise the very notion of regulation as the considered population 
is already infinite. Instead of characterizing it by the number of 
constituents, we will look at the spatial distribution of the popu-
lation by comparing it with the distribution governed by a Poisson 
law.

1.2. Presenting the result

Similarly as in [3], we deal with the phase space � consist-
ing of all locally finite subsets γ ⊂ R

d , called configurations. Local 
finiteness means that γ� := γ ∩ � is finite whenever � ⊂ R

d is 
compact. For compact � and n ∈ N0, we then set ��,n = {γ ∈
� : |γ�| = n}, where | · | denotes cardinality, and equip � with 
the σ -field B(�) generated by all such ��,n . This allows one to 
consider probability measures on � as states of the system. In a 
Poisson state, the entities are independently distributed over Rd . 
A homogeneous Poisson measure π	 with intensity 	 > 0 is char-
acterized by its values on ��,n given by the following expression

π	(��,n) = (	|�|)n

n! exp (−	|�|) , (1)

where |�| stands for the Lebesgue measure of �. Note that 
π	(�0) = 0, for all 	 > 0, where �0 is the set of all finite con-
figurations. Let P(�) be the set of all probability measures on �. 
We say that a given μ ∈ P(�) is sub-Poissonian if, for each com-
pact �, all n ∈ N0 and some 	 > 0, the following holds

μ(��,n) ≤ π	(��,n). (2)

It is believed that sub-Poissonian states are characterized by the 
lack of clustering, typical to procreating populations with noninter-
acting (noncompeting) constituents, see the corresponding discus-
sion in [3].

In dealing with states on �, one employs observables – appro-
priate functions F : � → R. Their evolution is obtained by solving 
the Kolmogorov equation

d

dt
Ft = L Ft, Ft |t=0 = F0, t > 0,

in which the operator L specifies the model. The model which 
we introduce here is based on the following evolutionary acts: (a) 
an entity located at x dies with rate (probability per unit time) 
m(x) + ∑

y∈γ \x a(x − y), where m(x) ≥ 0 corresponds to a per se 
mortality and a ≥ 0 is the competition kernel; (b) an entity lo-
cated at x undergoes fission, with two offsprings going to y1 and 
y2 with rate b(x|y1, y2). According to this, the operator L takes 
the form

(L F )(γ ) =
∑
x∈γ

⎛
⎝m(x) +

∑
y∈γ \x

a(x − y)

⎞
⎠ [F (γ \ x) − F (γ )]

+
∑
x∈γ

∫

(Rd)2

b(x|y1, y2) [F (γ \ x ∪ {y1, y2}) − F (γ )] dy1dy2.

(3)

In expressions like γ ∪ x, we treat x as the singleton {x}. Note 
that the fission rate is state-independent. Regarding a, m and b
we assume that: (a) a : Rd → [0, +∞) is a piece-wise continu-
ous function such that a(x) = 0 whenever |x| > r for some pos-
itive r < ∞; (b) m : Rd → [0, +∞) is measurable and bounded; 
(c) the fission kernel is translation invariant in the sense that 

b(x + z|y1 + z, y2 + z) = b(x|y1, y2) holding for all z ∈ R
d; (d) the 

function β : Rd → [0, +∞) defined by

β(y1 − y2) =
∫

Rd

b(x|y1, y2)dx (4)

is piece-wise continuous and such that β(x) = 0 whenever |x| > R
for some positive R < ∞; (e) β(x) = β(−x) for all x ∈ R

d and the 
following holds

∫

Rd

β(y)dy =
∫

(Rd)2

b(x|y1, y2)dy1dy2 =: 〈b〉 < ∞. (5)

Note that the translation invariance and the finite-range property 
are imposed here only to make the presentation of the model and 
the results as simple as possible. The version studied in [4] is char-
acterized by less restrictive conditions. Note also that we do not 
exclude the case where b is a distribution. For instance, by setting

b(x|y1, y2) = 1

2
(δ(x − y1) + δ(x − y2))β(y1 − y2),

we obtain the Bolker–Pacala model [3] as a particular case of our 
model.

Remark 1. The function β describes the dispersal of siblings, which 
compete with each other. As in the Bolker–Pacala model, here the 
following situations may occur:

• Short dispersal: there exists ω > 0 such that a(x) ≥ ωβ(x) for 
all x ∈ R

d; corresponds to R ≤ r.
• Long dispersal: for each ω > 0, there exists x ∈ R

d such that 
a(x) < ωβ(x); corresponds to R > r.

The direct use of L as a linear operator in an appropriate Ba-
nach space is possible only if one restricts the consideration to 
states on �0, see [4, Sect. 3]. Otherwise, the sums in (3) – taken 
over infinite configurations – may not exist. In view of this, we 
proceed as follows. Let C0(R

d) stand for the set of all continuous 
real-valued functions with compact support. Then the map

� � γ �→ F θ (γ ) :=
∏
x∈γ

(1 + θ(x)), θ ∈ Θ,

Θ := {θ ∈ C0(R
d) : θ(x) ∈ (−1,0]},

is measurable and satisfies 0 < F θ (γ ) ≤ 1 for all γ . It is possi-
ble to show, see [4], that {Fθ : θ ∈ Θ} is a measure defining class. 
That is, for each two μ, ν ∈ P(�), it follows that μ = ν whenever 
μ(F θ ) := ∫

F θdμ = ∫
F θdν =: ν(F θ ) holding for all such F θ . More-

over, under the mentioned above assumption that both a and b in 
(3) have finite range, (L F θ )(γ ) can be calculated for each γ ∈ �

and θ ∈ Θ . We prove that, for each μ0 ∈ Pexp(�), there exists the 
map [0, +∞) � t �→ μt ∈ Pexp(�) such that μt |t=0 = μ0, the map 
(0, +∞) � t �→ μt(F θ ) is continuously differentiable and the fol-
lowing holds

d

dt
μt(F θ ) = μt(L F θ ). (6)

Here Pexp(�) is a class of measures each element of which is sub-
Poissonian, see below, and such that μ(L F θ ) < ∞.
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