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More than twenty years ago, we were invited by professor V.B. Braginsky at the seminar of the Molecular 
Physics and Physical Measurements Department to make a report on using gauge fields, fibre bundles, 
and geometry to describe solids with structural defects. After the seminar, he proposed us to consider 
a possibility of using the above-mentioned exact mathematical and geometrical methods to create 
theoretical models of description of optomechanical properties of media with defects. It was the starting 
point for us to investigate the electromagnetic wave propagation in solids with defects. This paper is 
dedicated to the memory of professor Vladimir Borisovich Braginsky. The solutions of the electrostatics 
and magnetostatics equations for a continuous medium with dislocations are found. The expressions for 
the dependence of the electric permittivity and magnetic permeability on the dislocation distribution in 
a solid are found. The expression for the refractive index in a continuum with dislocations is obtained.

© 2017 Elsevier B.V. All rights reserved.

0. Introduction

All real crystals contain structural defects. Lattice vacancies, 
interstitial atoms, and their numerous complexes are formed in 
the process of crystal growing, under plastic deformations, radi-
ation exposure and other external effects. Dislocations are a natu-
ral product of crystallization and material treatment. In fact, real 
crystals virtually do not contain isolated dislocation lines. Besides, 
point, linear, and planar defects can move, form strongly interact-
ing ensembles, be generated at dislocation sources, disappear at 
sinks and undergo mutually transformations. For example, there 
are dislocation clusters in the form of coiled balls, plain nets or 
dipole structures. Regular groups of dislocations form disclinations 
and various kinds of boundaries of cells, blocks, fragments, and 
grains. The boundaries of disorientation can be both the sources 
and the sinks of linear and point defects.

The presence of structural defects strongly influences many 
properties of crystals. Thus, such fundamental characteristics of 
crystals as their strength and plasticity are determined almost ex-
clusively by their defect structure. For example, the yield point for 
a crystal grown with observing usual precautions can be equal to 
about 1, 0 MPa, while so-called crystal “whiskers”, which are vir-
tually ideal crystals, have the yield point equal to about 0, 1 · E ∼
104 MPa. On the other hand, a similar value of the yield point is 
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characteristic for strongly cold-hardened metals. The wire made of 
molybdenum–rhenium alloy, which underwent a drawing elonga-
tion of 6 ·106% at 293 K , does not fail at the strain up to 9500 MPa 
[1,2]. It should be noted that mechanical properties of amorphous 
metals also depend on the peculiarities of the irregular (“defect”) 
arrangement of atoms in them. It is clear from all mentioned above 
that a physical model, which would adequately describe macro-
scopic properties of crystals, should be based on the concept of 
a crystal as of a medium with many structural defects. Therefore, 
physics of structural defects is traditionally one of the most impor-
tant branches of condensed matter physics.

Unfortunately, there is no appropriate theoretical description of 
real crystals that would be applicable to theoretical investigations 
of mechanical, optical, and other physical properties of real crys-
tals. An appropriate description of an ideal crystal in the investi-
gations of physical phenomena with a characteristic length greater 
than the crystal lattice parameter can be achieved by describing an 
ideal crystal as a medium that is the Euclidean manifold. In other 
words, it is possible to apply the continuous approximation of dis-
crete matter to describe such phenomena. Hence, when analyzing 
the processes of plastic deformation and destruction of real mate-
rials, one can ignore the peculiarities of dislocations and consider 
their continuous distribution in a certain area. From this point of 
view, crystals with defects can be represented as the Riemannian 
and non-Riemannian manifolds.

In terms of the gauge description of structural defects in solids 
[3–9], it is shown that a continuous medium with defects can be 
modeled as the Riemann–Cartan manifold U4 with non-Euclidean 
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metric gμν and non-symmetric connection �λ
μν . Besides, the in-

ternal stresses in crystals caused by the presence of lattice defects 
are modeled as a change in the continuum geometry. In such a 
case, dislocations correspond to the presence of non-zero compo-
nents in the torsion tensor Q α

μν [5,9]. In this study, we will not 
go beyond the case when the influence of external stresses on 
the movement of dislocations inside the solid (deformations are 
small or absent) may be neglected, and we will assume that the 
manifold metric modeling the solid coincides with the Euclidean 
one, and the connection is given only by its spatial components: 
�i

jk = Q i
jk + Q i

jk + Q i
kj = �i jk . We will also assume that the dis-

tribution of structural defects is stationary and its change caused 
by the interactions with external fields may be neglected. Such an 
approach will allow us to study the influence of dislocations on 
electromagnetic processes inside of solids containing linear defects 
from the macroscopic point of view, i.e. in the case when the char-
acteristic length of a physical process exceeds the values of the 
lattice parameters.

In section 1, we will remind the principal ideas of the elec-
trodynamics of continuous media with defects described in papers 
[10,11]. In section 2, we will find the solutions to the electrostat-
ics and magnetostatics equations for the case of the antisymmetric 
tensor of dislocation density. In section 3, we will investigate the 
dependence of the tensors of electric permittivity and magnetic 
permeability of a continuous medium containing defects on the 
edge dislocation distribution density tensor. In the Conclusions, we 
will analyze the obtained results and prospects for further investi-
gations.

1. Electromagnetic field in a medium with defects

In paper [10], it was shown that the experimentally determined 
dislocation density tensor ρ̂ can be related to the torsion tensor Q̂
equal to

Q i
kl = �ε jklρ

i j, (1)

where ε jkl is the antisymmetric Levi-Civita symbol, � is a constant 
(the constant of interaction between electromagnetic field and de-
fects) which agrees with [3,12]. Since we consider only the purely 
dislocation free state and the metric gij coincides with the Eu-
clidean metric δi j , we will not distinguish lower and upper indices. 
The usual rule of summation over doubly repeated indices is sup-
posed.

In this case, the equations for the electromagnetic field in a 
continuous medium with a stationary dislocation distribution are 
following [10]:

div �D = �
(
(ρ̂)i j − (ρ̂�)i j

)
εikj Dk,

1

c
· ∂ �D

∂t
− curl �H = 2�ρ̂� �H,

div�B = �((ρ̂)i j − (ρ̂�)i j)εikj Bk,

1

c
· ∂ �B

∂t
+ curl�E = −2�ρ̂��E, (2)

where �E is the electric field strength, �D is the electric displace-
ment field, �H is the magnetic field strength, �B is the magnetic 
field, (ρ̂�)i j = (ρ̂) ji is the transposed matrix of the dislocation 
density tensor. Here and in what follows, the designation ρ̂��E
stands for (ρ̂� �E)i = (ρ̂�)i j E j and so on.

Let us transform the equation system (2) to a more simple form 
for the case of the antisymmetric dislocation density tensor (ρi j =
−ρ ji ). At first, we will find a relation between the trace of the 
contortion tensor and the dislocation density tensor:

Kk = Kiki = Q iki + Q kii + Q iki = 2κεkilρ
il. (3)

Let us introduce the vector �Q equal to the trace of the contortion 
tensor multiplied by −1, i.e. ( �Q )i = −( �K )i .

As an illustration, let us consider two simplest cases. The first 
example is a single edge dislocation with the dislocation line �ζ
collinear to the x1 axis and the Burgers vector �b collinear to the x3
axis. In this case, the components of the dislocation density ten-
sor are equal to ρi j = δi1δ j3bδ(r), where δ(r) is the delta-function 
depending on the distance to the dislocation line. The dislocation 

density tensor has the form ρ̂ =
⎛
⎝0 0 bδ(r)

0 0 0
0 0 0

⎞
⎠. Let us calculate 

the components of the vector �Q for this case: Q i = −2�εi jlρ jl =
−2�bεi13δ(r). Hence, �Q = (0, 2�bδ(r), 0).
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The second example is a single screw dislocation with both the 
dislocation line �ζ and the Burgers vector �b collinear to the x1 axis. 
In this case, the components of the dislocation density tensor are 
equal to ρi j = δi1δ j1bδ(r), therefore, the dislocation density tensor 

ρ̂ =
⎛
⎝bδ(r) 0 0

0 0 0
0 0 0

⎞
⎠. Let us calculate the components of the vector 

�Q for this case: Q i = −2�εi jlρ jl ≡ 0, since the dislocation density 
tensor for the screw dislocations is symmetric.
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Let us transform equation system (2) to a simpler form in the 
case of the antisymmetric dislocation density tensor (ρi j = −ρ ji ). 
Then the first equation of the system can be written as follows:

div �D = �
(
(ρ̂)i j − (ρ̂�)i j

)
εikj Dk =

− 2�ρ
(a)
i j εki j Dk = Dk

(
−2�εki jρ

(a)
i j

)
=

Dk(−2)Q iki = Dk(−�K )k = �Q · �D.
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