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The relativistic quantum theory of Stueckelberg, Horwitz and Piron (SHP) describes in a simple way the 
experiment on interference in time of an electron emitted by femtosecond laser pulses carried out by 
Lindner et al. In this paper, we show that, in a way similar to our study of the Lindner et al. experiment 
(with some additional discussion of the covariant quantum mechanical description of spin and angular 
momentum), the experiment proposed by Palacios et al. to demonstrate entanglement of a two electron 
state, where the electrons are separated in time of emission, has a consistent interpretation in terms of 
the SHP theory. We find, after a simple calculation, results in essential agreement with those of Palacios 
et al.; but with the observed times as values of proper quantum observables.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Palacios, Rescigno and McCurdy [1] have described a proposed 
experiment which could show entanglement of a two electron sys-
tem in which each electron is emitted at a slightly different time. 
Although the anticipation of this effect is very reasonable, it does 
not have a theoretical justification in the framework of the stan-
dard nonrelativistic quantum theory, since in the nonrelativistic 
theory, both electrons must be prepared in states at precisely equal
times. As for the Lindner et al. [2] experiment showing interference 
in time for the wave function of a particle, for which extensive cal-
culations were done using the nonrelativistic Schrödinger evolution 
of the electron, wave functions at different times (corresponding 
to elements of different Hilbert spaces [3]) are incoherent in the 
nonrelativistic quantum theory. The direct product states corre-
sponding to the basis for many body systems must, in the same 
way, be constructed from states in the same Hilbert space. There-
fore, the same conclusion can be reached for the entanglement of 
the spins of a two body system. In actual practice, in fact, it would 
not be possible experimentally to generate two body states at pre-
cisely equal times, so that it is important to construct a theoretical 
basis, as we shall do below, in which effects of the type we expect 
to see (and are seen, for example, in the experiment of Lindner et 
al. [2]) can be consistently described.
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The nonrelativistic theory of the two body state with spin is 
constructed from linear combinations of direct product wave func-
tions taken at equal time [4]. One could argue intuitively from the 
vector model, in which the result J2 = j( j + 1) (for J the angular 
momentum operator, and j the integer or half-integer eigenvalue), 
that it appears that the physical angular momentum is not pre-
cisely along the “direction” of the vector J, but can be thought of 
as precessing around it. The entangled spin zero state of two spin 
1/2 systems therefore would be the result of an exact synchro-
nization of these oppositely oriented precessing spins so that the 
total angular momentum is zero. At slightly different times, this 
synchronization would be, in principle, lost. Under nonrelativistic 
Schrödinger evolution the superposition of two-body states at dif-
ferent times would therefore be ineffective. Stated more rigorously, 
states are not coherent [3] at nonequal times and linear superpo-
sition is not defined in the nonrelativistic theory.

As for the Lindner et al. experiment [2], an explanation can be 
given in terms of the relativistic quantum theory of Stueckelberg, 
Horwitz and Piron (to be called SHP) [5]. The computation in terms 
of the SHP [6] was in precise agreement with the experimental re-
sult (actually predicted in 1976 [7], when the technology was not 
available for verification). In this paper, we apply a similar reason-
ing to the entangled two body state.

We start with a review of the basic SHP theory [5] and a discus-
sion of how the Wigner theory of induced representations for rel-
ativistic spin is applied in this framework. We then argue that the 
proposed experiment of Palacios et al. should yield well-defined 
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entanglement for the constituent particles at not precisely equal 
times.

Stueckelberg [5], in 1941, imagined that a particle world line 
would be straight for no interaction, but that interaction could 
bend the world line so that it would turn to propagate in the neg-
ative direction of time. To describe such a picture, he introduced 
an invariant parameter along the world line, which he called τ , 
and interpreted the backward in time evolving branch of the line 
as an antiparticle. Horwitz and Piron [5] then generalized this idea 
in the sense that the parameter τ was to be considered as a uni-
versal invariant time, as for the original postulate of Newton, in 
order to formulate the many body problem in this framework, as 
we discuss below.

As a model for the structure of the dynamical laws that might 
be considered, Stueckelberg proposed a Lorentz invariant Hamilto-
nian for free motion of the form

K = pμpμ

2M
, (1.1)

where M is considered a parameter, with dimension mass, asso-
ciated with the particle being described, but is not necessarily its 
measured mass. In fact, the numerator (with metric − + ++; we 
generally take c = 1),

pμpμ = −m2, (1.2)

corresponds to the actual observed mass (according to the Einstein 
relation E2 = p2 + m2), where, in this context, m2 is a dynamical 
variable.

The Hamilton equations, generalized covariantly to four dimen-
sions, are then

ẋμ ≡ dxμ

dτ
= ∂ K

∂ pμ

ṗμ ≡ dpμ

dτ
= − ∂ K

∂xμ
.

(1.3)

These equations are postulated to hold for any Hamiltonian 
model, such as with additive potentials or gauge fields. A Poisson 
bracket may be then defined in the same way as for the non-
relativistic theory. The construction is as follows. Consider the τ
derivative of a function F (x, p), i.e.,

dF

dτ
= ∂ F

∂xμ

dxμ

dτ
+ ∂ F

∂ pμ

dpμ

dτ

= ∂ F

∂xμ

∂ K

∂ pμ
− ∂ F

∂ pμ

∂ K

∂xμ

= {F , K },

(1.4)

thus defining a Poisson bracket {F , G} quite generally. The argu-
ments of the nonrelativistic theory then apply, i.e., that functions 
which obey the Poisson algebra isomorphic to their group algebras 
will have vanishing Poisson bracket with the Hamiltonian which 
has the symmetry of that group, and are thus conserved quantities, 
and the (τ independent) Hamiltonian itself is then (identically) a 
conserved quantity.

It follows from the Hamilton equations that for the free particle 
case

ẋμ = pμ

M
(1.5)

and therefore, dividing the space components by the time compo-
nents, cancelling the dτ ’s (p0 = E and x0 = t),

dx

dt
= p

E
, (1.6)

the Einstein relation for the observed velocity. Furthermore, we see 
that

ẋμ ẋμ = pμpμ

M2
; (1.7)

with the definition of the invariant

ds2 = −dxμdxμ, (1.8)

corresponding to proper time squared (for a timelike interval), this 
becomes

ds2

dτ 2
= m2

M2
. (1.9)

Therefore, the proper time interval �s of a particle along a trajec-
tory parametrized by τ is equal to the corresponding interval �τ
only if m2 = M2, a condition we shall call “on mass shell”.

Stueckelberg [5] formulated the quantized version of this the-
ory by postulating the commutation relations

[xμ, pν ] = ih̄gμν, (1.10)

where gμν is the Lorentz metric given above, and a Schrödinger 
type equation (we shall take h̄ = 1 in the following)

i
∂

∂τ
ψτ (x) = Kψτ (x), (1.11)

where ψ(x) is an element of a Hilbert space on R4 satisfying∫
|ψ(x)|2d4x = 1, (1.12)

and satisfies the required Hilbert space property of linear superpo-
sition. With the generalization of Horwitz and Piron [5], Eq. (1.11)
can be written for any number N of particles as

i
∂

∂τ
ψτ (x1, x2 . . . xN)) = Kψτ (x1, x2 . . . xN), (1.13)

where K could have, for example, the form

K = �N
i

pi
μpiμ

2Mi
+ V (x1, x2 . . . xN), (1.14)

and V (x1, x2 . . . xN ) is assumed, for our present purposes, to be 
Poincaré invariant.

The basis of the Hilbert space describing such states is pro-
vided by the direct product of one particle wave functions taken 
at equal τ (as for equal time t in the nonrelativistic theory [4]). 
In the following, we apply this structure to the description of two 
particles with spin.

2. Relativistic spin and the Dirac representation

We shall discuss in this section the basic idea of a relativistic 
particle with spin, based on Wigner’s seminal work [8]. The the-
ory is adapted here to be applicable to relativistic quantum theory; 
in this form, Wigner’s theory, together with the requirements im-
posed by the observed correlation between spin and statistics in 
nature for identical particle systems, makes it possible to define 
the total spin of a state of a relativistic many body system.

The spin of a particle in a nonrelativistic framework corre-
sponds to the lowest dimensional nontrivial representation of the 
rotation group; the generators are the Pauli matrices σi divided 
by two, the generators of the fundamental representation of the 
double covering of S O (3). The self-adjoint operators that are the 
generators of this group measure angular momentum and are asso-
ciated with magnetic moments. Such a description is not relativis-
tically covariant, but Wigner [8] has shown how to describe this 
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