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Fisher information, Shannon information entropy and Statistical Complexity are calculated for the 
interface of a normal metal and a superconductor, as a function of the temperature for several materials. 
The order parameter �(r) derived from the Ginzburg–Landau theory is used as an input together with 
experimental values of critical transition temperature Tc and the superconducting coherence length ξ0. 
Analytical expressions are obtained for information and complexity measures. Thus Tc is directly related 
in a simple way with disorder and complexity. An analytical relation is found of the Fisher Information 
with the energy profile of superconductivity i.e. the ratio of surface free energy and the bulk free energy. 
We verify that a simple relation holds between Shannon and Fisher information i.e. a decomposition of a 
global information quantity (Shannon) in terms of two local ones (Fisher information), previously derived 
and verified for atoms and molecules by Liu et al. Finally, we find analytical expressions for generalized 
information measures like the Tsallis entropy and Fisher information. We conclude that the proper value 
of the non-extensivity parameter q � 1, in agreement with previous work using a different model, where 
q � 1.005.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Fisher information [1] has two basic roles to play in theory 
[2]. First, it is a measure of the ability to estimate a parameter; 
this makes it a cornerstone of the statistical field of study called 
parameter estimation. Second, it is a measure of the state of dis-
order of a system or phenomenon, an important aspect of physical 
theory [2]. Fisher’s information measure (FIM) is defined for the 
simplest case of one-dimensional probability distribution P (x) as a 
functional of P (x) i.e.

IF ≡
∫

P (x)

(
dlnP (x)

dx

)2

dx =
∫

1

P (x)

(
dP (x)

dx

)2

dx. (1)

IF can also be written in terms of the so called Fisher information 

density i(x) = 1
P (x)

(
dP (x)

dx

)2
i.e. IF = ∫

i(x)dx. The FIM, according 
to its definition, is an accounter of the sharpness of the probabil-
ity density. A sharp and strongly localized probability density gives 
rise to a larger value of Fisher information. Its appealing features 
differ appreciably from other information measures because of its 
local character, in contrast with the global nature of several other 
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functionals, such as the Shannon [3], Tsallis [4,5] and Renyi [6]
entropies. The local character of Fisher information shows an en-
hanced sensitivity to strong changes, even over a very small-sized 
region in the domain of definition, because it is as a functional of 
the distribution gradient.

Very interesting applications of Fisher information have been 
made in quantum systems [7–17] including atoms, molecules, nu-
clei, or in mathematical physics in general [18–39]. However, in 
spite of extensive applications of information theory in quantum 
many body systems, most of the them focus on the behavior of 
systems in a single phase. Actually, there are a limited number 
of information-theoretical applications to systems that undergo a 
phase transition (see for example [40–46]). The main motivation 
of the present work is to extend the application of FIM in or-
der to include systems in a phase transition by employing the 
phenomenological theory of Ginzburg–Landau. More precisely, we 
consider the order parameter �(r) as the basic ingredient of the 
FIM functional. In particular, we replace the probability distribution 
P (x) with the inhomogeneous distribution of the superconducting 
phase defined in a proper way. In this model, the Fisher informa-
tion measure is introduced in a convenient way, directly related 
with the characteristics of a phase transition. We focus on the case 
of the interface between a normal metal and a superconductor. We 
find the dependence of the FIM on specific properties of the inter-
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face of superconductors including the superconducting coherence 
length as well as the critical transition temperature.

Next, we calculate the Shannon information entropy [3] and the 
LMC (statistical) complexity [47,48]. The dependence of these mea-
sures on the temperature is examined and interesting comments 
are made. The question of generalized (non-extensive) informa-
tion measures is also addressed. An analytical relationship between 
Shannon and Fisher information, previously proved and shown to 
hold for atoms and molecules, is demonstrated in the present case 
of the superconducting interface as well.

This letter is organized as follows. In section 2 we review briefly 
the Ginzburg–Landau theory for inhomogeneous systems. In Sec-
tion 3 we present the Fisher information measure using a proba-
bility distribution related with the order parameter. In section 4 we 
calculate and discuss some additional information and complexity 
measures including generalized ones. In section 5 we demonstrate 
Liu’s identity, while in section 6 we discuss the possibility of al-
ternative probability distributions. Finally, section 7 contains our 
concluding remarks.

2. Ginzburg–Landau theory for inhomogeneous systems

The Ginzburg–Landau theory is a theory of second-order phase 
transition, where one introduces an order parameter �(r) which 
is zero above the transition temperature Tc , but takes a finite 
value for T < Tc and uses the symmetry of the relevant Hamil-
tonian to restrict the form of the free energy as a functional of 
�(r) [49]. Following the discussion by Leggett [49], we assume 
that F [�(r), T ] is the space integral of a free energy density F
which is a function only of �(r) and its space derivatives and also 
their complex conjugates. The form of the free energy functional is 
[49]

Fs(T ) =
∫

Fs[�(r), T ]dr, (2)

Fs[�(r), T ] ≡ Fn(T ) + α(T )|�(r)|2 + 1

2
β(T )|�(r)|4

+ γ (T )|∇�(r)|2, (3)

where Fs is the superconducting free energy density and Fn is the 
normal-state free energy density. In eq. (3) the normalization of the 
order parameter �(r) is arbitrary. One demands that �(r) should 
be zero above Tc and take a uniform non-zero value for T < Tc

leading to the following equalities for the coefficients α(T ), β(T )

and γ (T ) [49]

α(T ) ∼= α0(T − Tc),

β(T ) ∼= β(Tc) ≡ β, (4)

γ (T ) ∼= γ (Tc) ≡ γ .

To obtain the total free energy we must integrate this over the 
system [49,51]

Fs(T ) = Fn(T )+
∫ (

α(T )|�(r)|2 + 1

2
β|�(r)|4 + γ |∇�(r)|2

)
dr.

(5)

According to Eq. (5) the free energy is a functional of the scalar 
functions �(r) and �∗(r). In order to find the order parameter 
�(r) we must minimize the total free energy of the system. The 
condition for the minimum free energy is found by performing a 
functional differentiation with respect to the above functions that 
is to solve the following two equations

Fig. 1. A schematic picture for the spatial variation of the order parameter �(x)
at the interface between a normal and superconducting metal in the presence of 
a magnetic field. The effective penetration depth λeff is also displayed. For more 
details see text and Ref. [50].

δFs[�(r), T ]
δ�(r)

= 0,
δFs[�(r), T ]

δ�∗(r)
= 0. (6)

The above conditions can be satisfied only when �(r) obeys

−γ ∇2�(r) +
(
α + β|�(r)|2

)
�(r) = 0. (7)

Equation (7) has several applications including the properties of 
the surfaces and interface of superconductors. Following Refs. [50,
51] we consider a simple model for the interface between a nor-
mal metal and a superconductor. The interface lies in the yz plane 
separating the normal metal in the x < 0 region from the super-
conductor in the x > 0 region. On the normal metal side of the 
interface the superconducting order parameter �(r) must be zero. 
Now, assuming that �(r) must be continuous, then the follow-
ing one dimensional nonlinear type Schrödinger equation must be 
solved,

−γ
d2�(x)

dx2
+ α(T )�(x) + β�3(x) = 0 (8)

in the region x > 0 with the boundary condition �(0) = 0, eq. (8)
can be solved analytically with the result [50]

�(x) = �0 tanh

(
x√

2ξ(T )

)
. (9)

Fig. 1 sketches the spatial variation of the order parameter �(x) at 
the interface between a normal and superconducting metal in the 
more general case of the presence of a magnetic field. The effective 
penetration depth λeff of the magnetic field is also displayed (for 
more details see Ref. [50]). In Eq. (9) �0 is the value of the order 
parameter in the bulk far from the surface and the parameter ξ(T )

is defined as

ξ(T ) =
(

γ

a(T )

)1/2

=
(

γ

α0

)1/2 1√
Tc − T

. (10)

Considering that ξ(0) ≡ ξ0 is the value of ξ for T = 0 the above 
relation is rewritten as

ξ(T ) = ξ0
1√

1 − T
Tc

, ξ0 =
(

γ

a0Tc

)1/2

. (11)

The quantity ξ has dimensions of length and is known as the 
Ginzburg–Landau coherence length or healing length. The physi-
cal significance of this length, in the condensed phase, is that it is 
a measure of the minimum distance over which one can “bend” 
the order parameter either in magnitude or in phase, before the 
bending energy becomes comparable to the condensation energy 
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