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We study a stacked triangular lattice Ising model with both intra- and inter-plane antiferromagnetic 
interactions in a field, by Monte Carlo simulation. We find only one phase transition from a paramagnetic 
to a partially disordered phase, which is of second order and 3D XY universality class. At low 
temperatures we identify two highly degenerate phases: at smaller (larger) fields the system shows 
long-range ordering in the stacking direction (within planes) but not in the planes (stacking direction). 
Nevertheless, crossovers to these phases do not have a character of conventional phase transitions but 
rather linear-chain-like excitations.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

A stacked triangular Ising antiferromagnet (STIA) is a geometri-
cally frustrated spin system that has attracted considerable atten-
tion over the past several decades [1–21] due to its frustration-
induced intriguing and controversial behavior as well as the fact 
that it reasonably describes some real magnetic materials, such as 
the spin-chain compounds CsCoX3 (X is Cl or Br) and Ca3Co2O6. 
The model consists of layers of triangular lattices stacked on top 
of each other thus forming linear chains of spins in the perpendic-
ular direction. The interaction between spins within the chains (or 
between layers) can be considered to be either ferromagnetic (FS-
TIA model) or antiferromagnetic (ASTIA model). While the FSTIA 
model is relevant to the spin-chain compound Ca3Co2O6 the ASTIA 
model can be used in modeling of CsCoX3.

In the absence of an external magnetic field the physics of both 
systems is the same1 and, therefore, most of the previous studies 
chose the FSTIA model for their investigations [1–7,10–15,18–21]. 
In zero field, the system has been found to undergo a second-
order phase transition from the paramagnetic (P) to a partially 
disordered (PD) phase (M, −M, 0), with two sublattices ordered 
antiferromagnetically and the third one disordered. There is a wide 
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1 The Hamiltonian of one model can be rewritten in terms of the other one with 
the spins in, e.g., odd layers inverted and the interlayer interaction sign changed, 
i.e., symbolically HA = J

∑
(+1)(−1) = − J

∑
(+1)(+1) = HF , where J > 0.

consensus that the transition belongs to the 3D XY universality 
class [1,2,10,13,18] albeit the tricritical behavior has also been sug-
gested [4]. Another phase transition at lower temperatures to a 
ferrimagnetic (FR) phase (M, −M/2, −M/2), with one sublattice 
fully ordered and two partially disordered has been proposed [2,6,
17] but questioned by several other studies [3,4,20,22], which ar-
gued that the low-temperature phase is a 3D analog of the 2D 
Wannier phase.

In the presence of the magnetic field, most of theoretical stud-
ies focused on elucidation of peculiar phenomena in magnetization 
processes observed in the experimental realization Ca3Co2O6 [19,
23–31]. Also critical properties of the FSTIA model have attracted 
a lot of interest due to phase transitions belonging to a variety 
of universality classes and multicritical behavior. In particular, the 
Monte-Carlo Mean-Field theory predicted the phase diagram in 
the temperature-field plane, with a small region of the PD phase 
stabilized at higher temperatures and small fields and the remain-
ing part occupied by the FR phase [6]. The character of the P–PD 
transition line is concluded as second-order belonging to the XY 
universality class, however, at higher fields the P–FR transition line 
is identified as first-order due to its three-state Potts universality 
class. The FR–PD is reasoned to belong to the Ising universality 
class with possible crossover to the first-order behavior at low 
temperatures and very small fields. Later Monte Carlo simulations 
confirmed the first-order nature of the P–FR transition, however, 
suggested that the PD phase is probably destabilized by any finite 
field and phase transitions at smaller fields were determined to 
belong to the tricritical universality class [12].
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Fig. 1. ASTIA lattice partitioned into six sublattices marked by different symbols. The 
solid (dashed) lines represent intra-layer (inter-layer) interaction J1 ( J2).

There have been attempts to also determine the phase diagram 
of the ASTIA model, which in the presence of the field is expected 
to differ from the FSTIA model, by the Monte-Carlo Mean-Field [7]
and the Landau [8,9] theories. Both approaches predicted, besides 
the high-temperature P–PD line of second-order transitions, also 
one [7] and up to two [8,9] phase transitions to ferrimagnetic 
states at lower temperatures which can be first- or second-order of 
the Ising universality. The goal of the present study is to confront 
these early results obtained by the above approximate approaches 
with Monte Carlo (MC) simulations and a finite-size scaling analy-
sis.

2. Model and methods

2.1. Model

We consider the ASTIA model described by the Hamiltonian

H = − J1

xy∑
〈i, j〉

σiσ j − J2

z∑
〈i,k〉

σiσk − h
∑

i

σi, (1)

where σi = ±1 is an Ising spin variable, J1 < 0 and J2 < 0 are 
respectively antiferromagnetic intra-layer and inter-layer exchange 
interactions, h is an external magnetic field, and the first and sec-
ond summations run over the nearest neighbor pairs within layers 
(in the xy plane) and between the layers (along the z axis), respec-
tively. Due to the antiferromagnetic nature of both interactions J1
and J2 it is desirable to decompose the entire lattice into six inter-
penetrating sublattices, as shown in Fig. 1. The total coordination 
number is z = 8 and each spin is coupled to six neighbors from 
two sublattices (3 + 3) in the same layer and two neighbors from 
another sublattice in the adjacent layers.

2.2. Monte Carlo simulations

In our Monte Carlo (MC) simulations we consider the ASTIA 
system of the size V = Lx × L y × Lz = L × L × 4L/3, i.e., Lz = 4L/3
layers of the size L × L stacked along the z-axis, comprising in to-
tal V = 4L3/3 spins. For obtaining temperature dependencies of 
various thermodynamic functions the linear lattice size is fixed to 
L = 24 and for the finite-size scaling (FSS) analysis it takes values 
L = 24, 36, and 48. In all simulations the periodic boundary condi-
tions are imposed.

Initial spin states are randomly assigned and the updating fol-
lows the Metropolis dynamics. The lattice structure and the short 
range nature of the interactions enable vectorization of the algo-
rithm. Since the spins on one sublattice interact only with the 
spins on the other, each sublattice can be updated simultaneously. 
Thus one sweep through the entire lattice involves just six sub-
lattice updating steps. For thermal averaging, we typically consider 
N = 105 MC sweeps in the standard and up to N = 107 MC sweeps 

in the histogram MC simulations [32,33], after discarding another 
20% of these numbers for thermalization. To assess uncertainty of 
the calculated quantities, we perform 10 runs, using different ran-
dom initial configurations, and the error bars are taken as twice of 
the standard deviations.

We calculate the enthalpy per spin e = E/V | J1| = 〈H〉/V | J1|, 
where 〈· · · 〉 denotes the thermodynamic mean value, the sublattice 
magnetizations per spin

mα = 6〈Mα〉/V = 6
〈∑

j∈α

σ j

〉
/V , α = 1,2, . . . ,6, (2)

and the total magnetization per spin

m = 〈M〉/V =
〈 V∑

i=1

σi

〉
/V . (3)

The magnetic susceptibility is defined as

χm = β(
〈
M2〉 − 〈M〉2)/V , (4)

and the specific heat as

C = β2(
〈
E2〉 − 〈E〉2)/V , (5)

where β = 1/kB T . To measure a degree of the ferrimagnetic or-
dering within the planes and the antiferromagnetic ordering in the 
stacking direction, we introduce the order parameters oxy and oz , 
defined as

oxy = 〈O xy〉z/L2 = 〈Mmax − Mmin + |Mmed|〉z/L2, (6)

and

oz = 〈O z〉/Lz =
〈 Lz∑

k=1

(−1)kσk

〉
xy

/Lz, (7)

where Mmax , Mmin , and Mmed are sublattice magnetizations in each 
plane with the maximum, minimum, and medium (remaining) val-
ues, respectively, and the symbols 〈· · · 〉z and 〈· · · 〉xy denote the 
mean values taken over the planes and over the chains, respec-
tively.

To study phase transitions in the present six-sublattice system, 
we define the order parameter in accordance with Ref. [34] as

o = 〈O 〉/V =
〈√

3

3

(
6∑

α=1

O 2
α

)1/2 〉/
V , (8)

where O 1 = (M1 − (M2 + M3)/2)/2, O 2 = (M2 − (M1 + M3)/2)/2, 
O 3 = (M3 − (M1 + M2)/2)/2, O 4 = (O 4 − (M5 + M6)/2)/2, O 5 =
(M5 − (M4 + M6)/2)/2, O 6 = (M6 − (M4 + M5)/2)/2, and the cor-
responding susceptibility

χo = β(
〈
O 2

〉
− 〈O 〉2)/V . (9)

In order to calculate the critical exponents and thus determine 
the order of the transition and also the universality class if the 
transition is second order, we employ a FSS analysis with the fol-
lowing scaling relations:

C(L) ∝ Lα/ν, (10)

O (L) ∝ L−β/ν, (11)

χ(L) ∝ Lγ /ν, (12)
d 〈O 〉

dβ
= 〈O 〉 〈E〉 − 〈O E〉 ∝ L(1−β)/ν, (13)

d ln
〈
O 2

〉
dβ

= 〈E〉 −
〈
O 2 E

〉
〈
O 2

〉 ∝ L1/ν, (14)
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