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Mixed convection heat transfer in two-dimensional lid-driven rectangular cavity filled with air (Pr =
0.71) is studied numerically. A hybrid scheme with multiple relaxation time lattice Boltzmann method 
(MRT-LBM) is used to obtain the velocity field while the temperature field is deduced from energy 
balance equation by using the finite difference method (FDM). The main objective of this work is to 
investigate the model effectiveness for mixed convection flow simulation. Results are presented in terms 
of streamlines, isotherms and Nusselt numbers. Excellent agreement is obtained between our results and 
previous works. The different comparisons demonstrate the robustness and the accuracy of our proposed 
approach.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, the Lattice Boltzmann Method (LBM) is considered as 
an alternative numerical method which has attracted much atten-
tion as a technique in fluid engineering [1]. This method based 
on a mesoscopic study of the macroscopic problem incorporates 
the basic conservation laws of the hydrodynamic variables such as 
density and velocity. This approach is initially developed from its 
predecessor, the Lattice Gas Automata (LGA). The LBM has rapidly 
evolved into a self-standing research subject. Thereafter, it has to 
be an efficient tool for simulating problems of fluid mechanics 
and transport phenomena [2–7]. A literature survey shows that 
this method is also used for applications involving interfacial dy-
namics and complex boundaries such as multiphase flows [8–10], 
compressible flows [11,12] and porous media [13]. Moreover, LBM 
is well-suited for high-performance implementations on massively 
parallel processors such as, for example, graphics processing units 
(GPUs) [14].

Concerning the term of collision in the lattice Boltzmann equa-
tion, two types of collision operator are considered. One of the 
simplest and most widely used models proposed by Bhatnagar, 
Gross and Krook [15], called BGK model, based on a single relax-
ation time (SRT). It achieved considerable success due to its easy 
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implementation and the ability to take into account complex ge-
ometries [16–18]. Despite the great advantages, this model, with 
single relaxation time, reveals deficiencies due to the numerical in-
stabilities [19] and consequent difficulties to reach high Reynolds 
number flows. This deficiency can be easily treated by using the 
second type of collision operator called Multiple Relaxation Time 
(MRT) operator [20–22]. The MRT model presents numerous ad-
vantages compared to the BGK model. It leads to a stable solution 
for flows with higher Reynolds numbers.

The main limitation of using LBM in engineering applications is 
the lack of satisfactory model for the thermal fluid flows problems. 
To remedy this problem, several approaches have been proposed 
which can be grouped into three categories: multispeed approach, 
double population approach and hybrid approach.

The multispeed model [23,24] consists in extending the distri-
bution function in order to obtain the macroscopic temperature. 
The authors of previous works [23–25] concluded that this model 
is not advantageous because it requires more computational re-
sources and is less stable than the other approaches described 
below [25].

The double population approach, called passive scalar approach, 
has been proposed to use two independent distribution functions 
[26,27]. One for the velocity field and the other for the tempera-
ture field. In this approach the temperature is considered as a pas-
sive scalar transported by the speed without changing the velocity 
field. This model assumes that the viscous dissipation and com-
pression work can be neglected for incompressible fluids and the 
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evolution of the temperature is given by the advection–diffusion 
equation. However, this approach is considered ineffective [28] be-
cause it is not necessary to add a distribution function to simulate 
a passive scalar.

Concerning the hybrid model, used in this article, and according 
to Lallemand and Luo [28], the instability of previous models in-
herent the LB method and is due to a coupling between the modes 
of collision operator. Authors show that the fault cannot be elim-
inated by increasing the number of speeds. Therefore, they argue 
that the best alternative to build athermal model is to use a hy-
brid method in which the flow is determined by the LB method 
and the energy equation is solved by another method.

For this reason, in our work the LBM-MRT model is used for 
velocity field, on the one hand, and finite differences for temper-
ature field, on the other hand. First, the method is validated for 
the classical MRT lid-driven cavity, yielding satisfactory agreement 
with data from the literature. Thereafter, the model has been used 
to simulate the 2D mixed convective flow in a lid-driven square 
cavity.

This paper is organized as follows. Section 2 presents the hybrid 
multiple relaxation time Lattice Boltzmann Method with (D2 Q 9)

lattice model to simulate the fluid flow. In Section 3 we present 
the finite difference method (FDM) to solve the energy equation. 
The problem description and boundary conditions are presented 
in Section 4. Results and discussions are presented in Sections
5.1 and 5.2. In Section 5.1 the MR-lid-driven cavity is presented. 
Section 5.2 deals with the coupling between the hybrid lattice 
Boltzmann method with the finite difference method for simulat-
ing mixed convection. Finally, we draw some conclusions.

2. Multiple relaxation time lattice Boltzmann method 
(MRT-LBM)

Within the LBM approach, fluid is described by a particle distri-
bution function which evolves in discrete space and time (a Dd Q q
lattice, d dimensions and q velocities) following two steps: propa-
gation and collision. Hence, the lattice Boltzmann equation is ex-
pressed as:

f i(�x + �ei, t + 1) − f i(�x, t) = Ωi (1)

where f i is the probability of finding a particle at lattice node �x, 
at the time t , moving with velocity �ei (i = 0, . . . , q − 1) and Ωi
is the collision operator. Note that the time step is made unit by 
convention.

It is more convenient to perform the collision process in the 
moment space, a square matrix can be used to represent the trans-
formation. The discrete distribution function f i could be expressed 
in terms of moments mi , by |m〉 = M| f 〉. M is a matrix constricted 
from velocity [19]. Hence, collision is expressed as moment relax-
ation:

m∗
i = mi − si

(
mi − meq

i

)
(2)

where meq
i is the equilibrium moment, m∗

i is the post collision mo-
ment and si is the relaxation matrix rate.

Physically moments are given by:

|m〉 = (ρ e ε jx qx j y qy pxx pxy )�

In the above, ρ is the density, e is the energy mode, ε is de-
fined as the kinetic energy, jx and j y the x and y components of 
momentum (mass flux), qx and qy correspond to the x and y com-
ponents of the energy flux. In addition, pxx and pxy correspond 
to the diagonal and off-diagonal components of the viscous stress 
tensor, and � denotes the transpose operator.

The macroscopic variables such as density ρ , velocity �u are cal-
culated as the moments of the distribution functions:

ρ =
q−1∑
i=0

f i and ρ�u =
q−1∑
i=0

f i �ei (3)

The nine velocity square lattice Boltzmann model (D2 Q 9), as 
shown in Fig. 2, has been used in our work due to its widely and 
successfully simulation of the two-dimensional thermal flows.

For the (D2 Q 9) lattices, the particle speeds �ei are defined as:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�ei = �0 i = 0

�ei =
(

cos

[
(i − 1)

π

2

]
, sin

[
(i − 1)

π

2

])
c i = 1,2,3,4

�ei =
(

cos

[
(2i − 9)

π

4

]
, sin

[
(2i − 9)

π

4

])
c
√

2 i = 5,6,7,8

(4)

where c = �x
�t is the lattice speed, �x and �t are the lattice width 

and time step, respectively. It is chosen that �x = �t , thus c = 1.
In D2 Q 9 lattice, the matrix M which constructed from veloci-

ties is defined as [19]:

M ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ
e
ε
jx

qx

j y

qy

pxx

pxy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5)

where the equilibrium value of moments can be also derived from 
the following equations:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρeq = ρ
eeq = −2ρ + 3

(
u2 + v2)

εeq = ρ − 3
(
u2 + v2)

jeq
x = ρu

jeq
y = ρv

and

⎧⎪⎪⎨
⎪⎪⎩

qeq
x = −u

qeq
y = −v

peq
xx = u2 − v2

peq
xy = u.v

(6)

The equilibrium density distribution function which depends on 
the local velocity and density is given by:

f eq
i = wiρ

[
1 + 3 �ei · �u

c2
+ 9( �ei · �u)2

2c4
− 3�u · �u

2c2

]
i = 0 → 8 (7)

where wi is the weighting factor defined as:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

wi = 4

9
i = 0

wi = 1

9
i = 1,2,3,4

wi = 1

36
i = 5,6,7,8

(8)

The relaxation rates can be expressed in a matrix form as:

S = diag(S0, S1, S2, S3, S4, S5, S6, S7, S8) (9)

In the present work we assume S0 = S3 = S5 = 0 for mass and 
momentum conservation before and after collision [19]. We also 
consider S7 = S8 = 1

τ due to fact that the viscosity formulation 
is the same as well as SRT model [19]. In the present simulation, 
S1 = 1.64, S2 = 1.2 and S4 = S6 = 8 × (2−S7)

(8−S7)
.

In the LBM the kinematic viscosity ν is related to the relaxation 
time by the relation:

ν = (τ − 0.5)c2
s �t (10)
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