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a b s t r a c t

Present communication aims to discuss magnetohydrodynamic (MHD) stagnation point flow of Jeffrey
nanofluid by a stretching cylinder. Modeling is based upon Brownian motion, thermophoresis, thermal
radiation and heat generation. Problem is attempted by using (HAM). Residual errors for h-curves are
plotted. Convergent solutions for velocity, temperature and concentration are obtained. Skin friction coef-
ficient, local Nusselt number and Sherwood number are studied. It is examined that velocity field decays
in the presence of higher estimation of magnetic variable. Furthermore temperature and concentration
fields are enhanced for larger magnetic variable.
� 2018 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The thermal nanofluids for heat transfer applications represent
a class of its own difference from conventional colloids for other
applications. Heat transfer has many utilization in industries with
the purpose of both increasing and decreasing temperature. Con-
ventional fluids such as ethylene glycol, water, oil, etc. are conven-
tional materials which do not have higher thermal conductivity.
Nano-sized particles enhance the rate of heat transfer when used
in a base fluid. These particles are useful in a wide range of appli-
cations in industry, transportation, microelectronics and thermal
generation. Choi and Eastman [1] investigated an enhancement
in thermal conductivity of conventional fluids via addition of
nanoparticles. Nanoparticles are available in various shapes, e.g.
rod-like, tabular or spherical. Turkyilmazoglu et al. [2] discussed
behavior of heat and mass transfer of nanoparticles during flow
by vertical flat plate with effects of thermal radiation. Few recent
studies about thermophoresis and Brownian motion are men-
tioned through Refs. [3–10].

Recent researchers also discussed about different characteristic
of non-Newtonian models. Rate type fluids are the sub-class of
non-Newtonian fluids. These materials describe contributions of

relaxation and retardation times. Jeffrey fluid model [11–14] is
suggested to describe the same effect. Hayat et al. [15] described
stagnation point flow of MHD second-grade fluid by a shrinking
cylinder. Sheikholeslami et al. [16] explored MHD flow with effects
of heat and mass transfer over a shrinking surface. Further radia-
tion effect cannot be ignored for higher temperature. This effect
in boundary layer is prominent in engineering, industries, space
technology and in nuclear reactors etc. Pal [17] investigated the
behavior of Hall current and thermal radiation on MHD flow
bounded by an unsteady shrinking surface. Bhattacharyya et al.
[18] discussed about the influences of radiation in micropolar fluid
flow past a porous stretching surface. Mukhopadhyay [19] ana-
lyzed the radiation and slip impacts on MHD boundary layer flow.
Hayat et al. [20] and Bhattacharyya [21] exploredmixed convective
and radiative flows of Maxwell fluid in the presence of stagnation
point and thermal radiation. Das et al. [22] modeled MHD second
grade flow towards convective heated extended surface. Flows by
moving sheets are also discussed in the studies [23–26]. Hayat
et al. [27] examined flow of Jeffrey fluid with mixed convection
and double stratification effects. Viscous fluid flow by a stretching
cylinder is discussed by Wang [28]. Features of Jeffrey nanofluid
flow with mass flux radiation and mixed convection condition
are studied in Refs. [29–31]. The references [32–45] investigated
flow by a cylinder or sheet with different flow behavior like
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Cattaneo-Christov heat flux, high Reynolds number, homogeneous-
heterogeneous reactions etc.

The purpose of current attempt is to report the MHD stagnation
point flow of Jeffrey nanofluid bounded by a stretchable sheet.
Brownian and thermophoresis effects are considered. Boundary
layer concept and assumption of small magnetic Reynold number
are addressed. Homotopy approach [42–45] is used to solve the
governing nonlinear systems. Aspects of several significant param-
eters on velocity f 0 gð Þ� �

, temperature h gð Þð Þ and nano-particles vol-
ume fraction / gð Þð Þ are addressed. This study is arranged in the
following structure. Next section has formulation. Section three
has solutions and related analysis. Discussion and conclusions
are given in sections four and five.

2. Formulation

Consider the stagnation point flow of magneto Jeffrey nanoma-
terial by a stretching cylinder of radius R1. Heat generation is stud-
ied. Here x-axis is in the axial direction and r is normal to x-axis. A
uniform applied magnetic field B0 conducts the fluid. Ther-
mophoresis and Brownian motion are considered. The problems
statements are [36]:
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Here u and v are the velocities along x and r directions respec-
tively. Thermal radiation contribution by Rosseland approximation
leads to the expression:
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Eq. (1) is trivially satisfied and Eqs. (2)–(4) along with boundary
conditions can be put into the forms:
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in which prime represents derivative with respect to g. The values
of c; A; b; M; R; Nt ; Nb; Sc; Pr; s; d are:
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Here c is defined as the curvature parameter, A the ratio of veloci-
ties, b the Deborah number,M the Hartman number, R the radiation
parameter, Nt and Nb the thermophoresis parameter and the Brow-
nian diffusion parameter respectively, Sc the Schmidt number, Pr
the Prandtl number, s the ratio of liquid heat capacity to nanopar-
ticles effective heat capacity and d the dimensionless heat genera-
tion parameter. The local Nusselt number, skin friction coefficient
and local Sherwood number are:
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Dimensionless local Nusselt number, skin friction coefficient
and Sherwood number are:
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with local Reynold number by
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where t is the kinematic viscosity.
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