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A B S T R A C T

Purpose: To train and evaluate a very deep dilated residual network (DD-ResNet) for fast and consistent auto-
segmentation of the clinical target volume (CTV) for breast cancer (BC) radiotherapy with big data.
Methods: DD-ResNet was an end-to-end model enabling fast training and testing. We used big data comprising
800 patients who underwent breast-conserving therapy for evaluation. The CTV were validated by experienced
radiation oncologists. We performed a fivefold cross-validation to test the performance of the model. The seg-
mentation accuracy was quantified by the Dice similarity coefficient (DSC) and the Hausdorff distance (HD). The
performance of the proposed model was evaluated against two different deep learning models: deep dilated
convolutional neural network (DDCNN) and deep deconvolutional neural network (DDNN).
Results: Mean DSC values of DD-ResNet (0.91 and 0.91) were higher than the other two networks (DDCNN: 0.85
and 0.85; DDNN: 0.88 and 0.87) for both right-sided and left-sided BC. It also has smaller mean HD values of
10.5 mm and 10.7 mm compared with DDCNN (15.1 mm and 15.6mm) and DDNN (13.5mm and 14.1mm).
Mean segmentation time was 4 s, 21 s and 15 s per patient with DDCNN, DDNN and DD-ResNet, respectively. The
DD-ResNet was also superior with regard to results in the literature.
Conclusions: The proposed method could segment the CTV accurately with acceptable time consumption. It was
invariant to the body size and shape of patients and could improve the consistency of target delineation and
streamline radiotherapy workflows.

1. Introduction

Radiotherapy of tumors requires accurate, patient-specific treat-
ment planning to deliver high radiation doses to the target and to spare
healthy tissues. Segmentation of the clinical target volume (CTV) and
organs at risk (OARs) are essential steps for successful treatment de-
livery. In general, such segmentation is performed by manual delinea-
tion in computed tomography (CT) and/or magnetic resonance (MR)
images. However, manual delineation is challenging, time-consuming,
and subjective, with considerable inter- and intra-observer variability
[1–4]. Thus, accurate automated segmentation methods are highly
desired and useful for pre-treatment radiotherapy planning and adap-
tive radiotherapy during treatment.

A variety of automated segmentation software has been introduced
to radiotherapy treatment planning. The common aspect of all these
methods is that they are based on multiple-atlas [5–10] segmentation
approaches. They use deformable image registration (DIR) methods to
match the target image to be segmented and multiple atlases containing
ground truth (GT) segmentations and then propagate the labeled

structures in the atlas image onto the target image automatically.
However, the DIR is not able to account for large deformation between
source and target image. Therefore one “generic atlas”may not perform
well for patients with considerable variation in the appearance of
anatomic structures. Multiple atlases usually need to build according to
the size, shape, or other inconsistencies in clinical image data. A po-
tential solution is the feature-based machine learning approach, which
could capture such variation and build into the prediction model. One
“generic” model accounting for all variation will be more efficient in
clinical practice.

In recent years, deep learning methods have resulted in many
achievements in computer vision [11–19]. There has been increasing
interest in applying deep learning to radiotherapy [20–26]. Ibragimov
et al. [24] used typical convolutional neural networks (CNNs) for the
segmentation of OARs for CT images of the head and neck. However,
auto-segmentation of the CTV is more challenging for three main rea-
sons. First, low contrast visibility and high noise levels usually lead to
ambiguous and blurred boundaries between the CTV and normal tissues
on CT images. Second, the CTV usually includes tissues with potential
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tumor spread or subclinical diseases that are barely detectable in the
planning CT images. Third, delineation of the CTV is highly dependent
upon the physician’s knowledge and recognition of structures. Hence,
accurate segmentation of the CTV has become a “bottleneck” in
radiotherapy. Recently, we developed deep dilated convolutional
neural network (DDCNN) [25] and deep deconvolutional neural net-
work (DDNN) [26] for automatic segmentation in rectal and naso-
pharyngeal cancer. Use of deep learning to carry out CTV segmentation
for breast cancer (BC) has not been described before.

There are three main types of layers to build CNNs architectures:
convolutional layer, pooling layer, and fully-connected layer [12].
These layers are stacked to form a full CNNs architecture. The levels of
extracted features can be enriched by the number of stacked layers
(depth). The network depth is of crucial importance, and the perfor-
mance could greatly benefit from very deep models [27]. In this work,
we trained and evaluated a much deeper network named deep dilated
residual network (DD-ResNet) for automatic segmentation in planning
CT of BC. We expected the accuracy could be improved with the deeper
model stacked with more layers. The typical procedure for radiotherapy
after breast-conserving surgery was studied. The proposed method was
invariant to the body size and shape of patients with enough training
examples. The method could “learn” such knowledge by itself and
handle input images with huge differences. These are necessary pre-
paratory and important steps towards developing automatic treatment
planning methods for radiotherapy.

2. Materials and methods

2.1. Data acquisition

Data of patients with early-stage BC who underwent breast-con-
serving therapy from January 2013 to December 2016 in Department of
radiation oncology, Cancer Hospital, Chinese Academy of Medical
Sciences were collected. Patients received adjuvant radiotherapy after
lumpectomy. Only those patients who received whole-breast radio-
therapy were included in our study. Patients who underwent axillary or
supraclavicular radiotherapy were excluded from the present study.
The CTV included most ipsilateral breast tissue.

The data for the planning CT were acquired on Somatom Definition
AS 40 (Siemens Healthcare, Forchheim, Germany) or Brilliance CT Big
Bore (Philips Healthcare, Best, the Netherlands) systems set on helical
scan mode. CT images were reconstructed using a matrix size of
512×512 and thickness of 5mm. Delineation of the CTV was ap-
proved by senior radiation oncologists.

In total, 57,878 CT slices were collected from 800 patients. Four-
hundred patients had right-sided BC and the remainder had left-sided
BC. “Standard GT segmentations” were defined as the reference seg-
mentations generated and cross-checked by experienced radiation on-
cologists. All the voxels that belonged to the GT segmentations of the
CTV were extracted and labeled as the “outputs”.

2.2. Deep learning algorithm for segmentation

Although the CTV includes the invisible tumor extent, deep learning
is able to mine the non-explicit image properties hidden within in the
image data. The data for model training is based on the CTV labels and
their corresponding planning CT images. The physicians contoured the
CTV on the planning CT images according to the breast-conserving
surgery. The process of inferring CTV from the planning CT images after
breast-conserving surgery is implicit in these data and has statistical
regularity. As long as this statistical regularity exists, the deep learning
method that is a data-driven statistical machine learning algorithm can
learn the contouring process well.

Fig. 1 is a flowchart of the deep learning-based segmentation
method. It was an end-to-end segmentation framework that could
predict pixel-wise class labels in CT images. The training set

(comprising CT images and manual segmentation labels) was used to
adjust the parameters to train a good segmentation model. Then, the
test set was used to assess the performance of the model.

Deep learning methods such as CNNs exploit three mechanisms (a
local receptive field, weight sharing, and subsampling) that reduce the
number of parameters that must be learned in a model drastically. Here,
we introduced a robust deep learning algorithm (DD-ResNet) to seg-
ment the CTV for BC radiotherapy. Fig. 2 shows the detailed archi-
tectures of DD-ResNet. We deployed a 4-stream dilated convolutional
module before using the ResNet-101[28] networks. The dilated con-
volutional module is able to efficiently extract original context in-
formation by introducing different dilated factors. By setting different
dilated factors, the filter can achieve large receptive fields; thus can
extract the multi-scale contextual feature. After that, the multi-scale
feature maps are added to a specific feature number and feed forward to
the ResNet-101 networks. The ResNet-101 has 101 weighted layers, and
it is a fully convolutional network architecture. Similar to image clas-
sification, the ResNet-101 network mainly extracts low-level, middle-
level and high-level visual features. The final extracted features are
utilized to achieve pixel-level classification task. In addition, deep
convolutional networks are difficult to optimize due to the vanishing
gradients, and the vanishing feature is harmful for semantic segmen-
tation task. The residual networks (ResNet) solved this problem by
adding “shortcut connections” that were summed with the output of the
convolutional layers. An example of the residual block is shown in
Fig. 2b. It took a standard feed-forward convolutional network and
added skipped connections that bypassed a few convolutional layers at
a time. Each bypass gave rise to a residual block in which the con-
volutional layers predicted a residual that was added to the input tensor
of the block. For a given input image, we used a multiple-path dilated
convolutional network strategy to extract the multiple-scale feature
map. A batch-normalized (BN) option was used after each convolu-
tional layer. Then, an element-wise rectified-linear non-linearity
(ReLU) max (0, x) was applied. Downsampling was carried out by
conv3_1, conv4_1, and conv5_1 with a stride of 2. Thus, the size of
original input image was reduced with a factor of 8. Therefore, the
output of sum layer needs to be interpolation to the original size, and
execute pixel-level classification. In our work, we use bilinear-inter-
polation to recover the original size. The proposed residual learning
framework was easy to optimize and could gain accuracy from a con-
siderably increased depth.

2.3. Experiments

In this work, training and evaluation of right- and left-sided BC were
undertaken separately. We performed a fivefold cross-validation, where
the dataset was randomly divided into five equal-sized subsets. Firstly,
we trained the model on the first 4 subsets (80% of the data) and tested
on the 5th subset (20% of the data). Subsequently, we chose another
subset as the test set and trained a second model on the remaining 4
subsets. We repeated this step until we trained 5 models. We im-
plemented the training, evaluation, error analysis and visualization
pipeline of our model using Caffe [29] (a publicly available deep
learning framework) and then compiled with the NVIDIA CUDA® Deep
Neural Network library (cuDNN) [30] computational kernels.

2.3.1. Training
We trained models for right- and left-sided BC separately. The

training set was used to “tune” the parameters of the networks. In de-
tail, the original two-dimensional (2D) CT images were the inputs and
the corresponding segmentation probability maps about the CTV were
the outputs. The model parameters for each network were initialized
using the weights from the corresponding model trained on ImageNet
and were then “fine-tuned” using BC data. We adopted data-augmen-
tation methods such as “random cropping” and “flipping” to reduce
overfitting. We used a batch size of 1 for DD-ResNet due to memory
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