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a b s t r a c t 

In this paper, we applied the multifractal detrended fluctuation analysis to the daily means of wind speed 

measured by 119 weather stations distributed over the territory of Switzerland. The analysis was focused 

on the inner time fluctuations of wind speed, which could be linked with the local conditions of the 

highly varying topography of Switzerland. Our findings point out to a persistent behaviour of almost all 

measured wind speed series (indicated by a Hurst exponent larger than 0.5), and to a high multifractality 

degree indicating a relative dominance of the large fluctuations in the dynamics of wind speed, especially 

on the Swiss Plateau, which is comprised between the Jura and Alps mountain ranges. The study repre- 

sents a contribution to the understanding of the dynamical mechanisms of wind speed variability in 

mountainous regions. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Wind has been gaining an increasing attention in the context of 

renewable energy because it represents one important substituent 

to conventional fuels that should play a major role in the future 

energy mix [1] . In fact, wind power has the advantage to be widely 

produced (in the three consecutive years, from 2013 to 2015, the 

world total wind capacity grew up more than 10% [2] ) with little 

environmental pollution, becoming economically competitive as a 

type of clean energy source capable of withstanding environmental 

damage and avoid future crises [3] . 

In mountainous regions like the Alps, wind speed highly 

changes not only in time but also in space. Topography, in fact, 

influences strongly the wind speed [4,5] . Ridge crests, deep val- 

leys, or other irregular landscapes are important orographic fea- 

tures that can exert an influence on boundary layer flows [6] . The 

Alps are characterized by many local climatic phenomena, natural 

channelling effects, and thermally induced circulations that make, 

for instance, wind speed very high at one location but very slow in 

a near valley, revealing a large variability and discontinuous char- 

acter within small areas, and making the spatial interpolation of 

wind speed quite arduous [7] . The analysis of wind speed within 

the atmospheric boundary layer is always challenging, since it rep- 

resents a largely fluctuating and non-linear component of atmo- 
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spheric flows, whose space-time variability can be high [6] . In ad- 

dition, the modelling of wind speed and extreme events, as well as 

the regionalisation schemes of wind speed and direction is rather 

difficult [8] , due to the presence of many turbulence effects and 

roughness factors [9] . However, some methods have been devel- 

oped to overcome the problems related to the regionalisation of 

wind speeds [6,10–13] , by using correction factors related to topog- 

raphy (slope angle, altitude, land-form characteristics) that, added 

to the calculation of wind speed, have enabled a better adjustment 

of the results with the observations. 

Several studies have been performed on the wind speed field 

over the territory of Switzerland [13,14] , which is characterized by 

a topographically complex terrain. Etienne et al. [6] applied the 

Generalized Additive Models (GAMs) to regionalise wind speeds 

measured at the Swiss weather stations by means of a number 

of physiographic parameters. They succeeded in providing reliable 

wind predictions on the basis of the 98 th percentile of the daily 

maximum wind speed, and found a dependence of wind speed 

upon the altitude and roughness of the mountain shapes. Jungo 

et al. [14] applied the Principal Component Analysis (PCA) and the 

Cluster Analysis (CA) to several Swiss meteorological stations. They 

clustered these structures based on their daily gust factors, de- 

pending on the weather type. As a result, the obtained clusters of 

stations, whose spatial distribution depended on the complexity of 

terrain, exhibited a comparable variability to the daily gust factor 

and to their response to the weather forcing. Weber and Furger 

[15] applied an automated classification scheme to one year wind 

data and found 16 distinct near-surface wind flow patterns, whose 
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knowledge is important because they can form intricate patterns 

such as large-scale winds and locally forced wind systems inter- 

play. Robert et al. [16] applied general regression neural networks 

(GRNN) as a non-linear regression method to interpolate monthly 

wind speeds in complex Alpine orography, using as training data 

those coming from Swiss meteorological networks to capture the 

relationships between topographic features and wind speed. 

In this study, we aim at analysing the time series of daily mean 

of wind speed recorded by a wide monitoring network covering 

all the territory of Switzerland. Because of the complexity of the 

terrain, related to the large variability of topographic conditions 

that characterize Switzerland, wind speed is featured by a com- 

plex time dynamics. In order to investigate the dynamical proper- 

ties of wind speed time series, we use the multifractal detrended 

fluctuation analysis (MFDFA) to identify correlations, persistence, 

intermittency, and heterogeneity. 

Since the investigation of multifractal behaviour in wind speed 

has been becoming an important topic only recently, just a few 

studies have been carried out so far. Kavasseri and Nagarajan 

[17] showed that the multifractality found in four time series of 

hourly means of wind speed in USA could be explained by fitting 

the data with a binomial cascade multiplicative model. Telesca and 

Lovallo [18] found that the multifractality of the wind speed se- 

ries recorded at several heights from the ground from 50 to 213 m 

was due to the different long-range correlations in small and large 

speed fluctuations. Fortuna et al. [19] applied the MFDFA to several 

hourly wind speed series in Italy and USA and found that the mul- 

tifractal width ranged in a quite close interval of values between 

0.39 and 0.59. De Figueiredo et al. [20] found that the mean and 

the maximum of four wind speed time series in Brazil were all per- 

sistent, but the maximum was more multifractal than the mean. 

Piacquadio and de La Barra [21] suggested the use of some key 

multifractal parameters of wind speed as local indicator of climate 

change. Telesca et al. [22] analysed the spectral and the multifrac- 

tal characteristics of several wind speed time series in Switzerland, 

they found cyclic components with period of 1 day and 12 h. These 

cyclic components are linked with the daily cycle of temperature 

and pressure, along with persistence and multifractal characteris- 

tics at large timescales, but anti-persistence and monofractal be- 

haviours at smaller ones. The multifractal analysis has been used 

also in complex networks; for instance Jalan et al. [23] analysed 

the scaling behaviour of edges of networks. 

In our paper, we apply the MFDFA to a large dataset of 119 wind 

speed time series, measured by weather stations belonging to the 

meteorological network that covers the whole territory of Switzer- 

land. Our aim is to investigate the spatial variability of the persis- 

tence, and the multifractal features of wind speed in Switzerland; 

and to find possible relationship with its topography. In order to 

analyse only the inner fluctuations of wind speed that are not af- 

fected by seasonal cycles, we ignored the trend and seasonal of 

the time series and focused our attention only on the remainder 

(residual) obtained after the decomposing of the time series. 

2. Data and exploratory analysis 

The data used in this work are provided by the Federal Office 

of Meteorology and climatology of Switzerland, which manages a 

wide network of meteorological stations covering the entire Swiss 

territory more or less homogeneously at different altitudes. Fig. 1 

shows the location of the wind stations and the three Swiss re- 

gions (Jura, Plateau and Alps) delimited by SwissTopo (Swiss Fed- 

eral Office of Topography) based on geological and geomorpholog- 

ical features. This data were used by Vega Orozco et al. [24] to 

characterise the spatial distribution pattern of the population in 

Switzerland using fractal and multifractal tools. 

In this work, the raw data consist of high frequency (10-min 

sampling time) wind speed series, collected by 119 stations, dur- 

ing the period between 2012 and 2016 ( Fig. 2 shows, as an exam- 

ple, some wind speed time series). We analysed the daily means 

of wind speed in order to remove the periodicity of one day and 

12 h [22] . 

Because of the complexity of the data, we performed an ex- 

ploratory analysis in order to identify the probability distribution 

that better describes wind speeds. We considered the three distri- 

butions that are mostly used to model wind speed. Table 1 illus- 

trates for each distribution its probability density function and the 

corresponding parameters. 

In order to evaluate the goodness-of-fit of the data with each 

probability distributions, we used the well-known Kullback–Leibler 

divergence (KL). Given a random sample X 1 , . . . , X n from a probabil- 

ity distribution P ( x ) with density function p ( x ) over a non-negative 

support. If we suppose that the sample comes from a specific prob- 

ability distribution Q ( x ) with a density function q ( x ), the KL infor- 

mation on the divergence between P ( x ) and Q ( x ) is given by the 

following formula [28] : 

D KL (p‖ q ) = 

∫ ∞ 

0 

p(x ) ln 

p(x ) 

q (x ) 
dx. (1) 

It is known that the information divergence D KL ( p ‖ q ) ≥ 0. There- 

fore, if D KL (p‖ q ) = 0 , the sample comes from the specific probabil- 

ity distribution Q ( x ) [29,30] . 

Therefore, we calculated the KL divergence between the pro- 

posed probability distributions and the wind speed data. We ob- 

tained the results shown in Fig. 3 , which suggests that the GEV 

distribution fits the data better than the other two distributions. 

Before applying the MFDFA, we decomposed the time series by 

using the Seasonal and Trend decomposition based on the Loess 

smoother (STL), proposed by Cleveland et al. [31] . In this method 

each wind speed time series is decomposed into trend ( T i ), sea- 

sonal ( S i ) and remainder ( R i ) components. 

The STL decomposition consists mainly of two important recur- 

sive procedures: an inner loop and an outer loop. The inner loop 

is used to update the trend and seasonal components, while the 

outer loop computes the robustness weights according to the re- 

mainder component, which will be used in the next iteration of 

the inner loop. The outer loop tends to reduce the weights of out- 

liers or extreme values in the time series; in other words, the 

weights decrease by increasing the distance from x i whereas the 

closest point to x i has the largest weight. 

In our study, the STL decomposition was implemented by using 

the stl function of the ”stats” R library [32] . By setting the param- 

eters: s.window = “periodic”, inner = 1, outer = 15, s.degree = 1, 

and leaving the others as default in order that (1) each daily value 

of the seasonal component is calculated as the calendar mean (for 

instance, the value of the seasonal component at 1st January is the 

mean of the yearly values at 1st January of the time series; and (2) 

a robustness iteration for the inner and outer loops is guaranteed 

to better handle extreme values and outliers. For more theoritical 

details on the procedures of the STL decomposition, the reader can 

refer to Cleveland et al. [31] . 

Fig. 4 shows, as an example, the three components for the 

station Jungfraujoch: the seasonal ( Fig 4 (b)), the trend ( Fig 4 (c)), 

and the remainder ( Fig 4 (d)). As it can be clearly seen, the sea- 

sonal component is characterized by the annual oscillation, which 

is linked with the yearly meteo-climatic cycle. The trend compo- 

nent shows a slow time evolution of the wind speed, characterized 

by a very small range of variability. The remainder, instead, appears 

quite irregular and characterized by high frequency fluctuations, 

suggesting a “richer” dynamics that could be probably linked with 

the local topographic conditions of the measuring site. The appar- 

ent noisy character of the remainder component does not mean 
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