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a b s t r a c t 

The infection rate of a propagation model is an important factor for characterizing a dynamic diffusion 

process accurately, which determines the scale and speed of a diffusion. Inferring an infection rate, based 

on an observed propagation phenomenon, can help us better estimate the threat of a diffusion in advance 

and deploy corresponding strategies to restrain such diffusion. Meanwhile, the infection rate is a vital 

and predefined parameter in the field of propagation network reconstruction and propagation source 

identification. Therefore, how to infer an infection rate effectively from observed diffusion data is of great 

significance. In this paper, a backpropagation-based maximum likelihood estimation (BP-ML) is used to 

infer such infection rate. More specifically, a set of sensors are first deployed into a network for collecting 

diffusion data (i.e., the infection time of a node). Then, a series of backpropagations are initiated by nodes 

resided by these sensors in order to deduce the more probable infection rate based on the maximum 

likelihood estimation. Some experiments in real-world networks show that by taking full advantage of 

observed diffusion data, our proposed method can infer the infection rate of a diffusion accurately. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

In the modern society, the phenomena of network diffusion be- 

come ubiquitous since many real-world systems take the form of 

networks [1] . For instance, rumors spread through online social 

networks (OSN) [2] , computer viruses propagate over the Inter- 

net [3] , and epidemics diffuse via human contact networks [4] . 

These diffusions, triggered by network risks (e.g., rumors, com- 

puter viruses and epidemics), often result in detrimental and un- 

certain social effects [5] . Therefore, it is crucial for us to under- 

stand the potential mechanism of a diffusion process in order to 

control and restrain such diffusion. 

Over the past decades, extensive research, revolving around dif- 

fusion dynamics, has been conducted based on simulations. To 

simulate a dynamic process, a diffusion model with a specified 

infection rate, is predefined and employed as a test-bed in many 

scenarios [6–8] . For example, in the domain of vital nodes identi- 

fication [9,10] , a diffusion process, initiated by vital nodes, could 

be characterized by the susceptible-infected (SI) model or the 

susceptible-infected-susceptible (SIS) model [11] . Through compar- 

ing the speed and scale of such propagation, we can estimate the 

influence and importance of these vital nodes. In most cases, an 
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infection rate is assigned according to predefined assumptions. An- 

other typical example is the network immunization so as to re- 

strain malicious virus propagation (e.g., email worms), unwanted 

information dissemination (e.g., rumors) or infectious diseases 

transmission (e.g., H1N1 influenza pandemic) [12,13] . The corre- 

sponding models (e.g., computer virus propagation models [14,15] , 

information diffusion models [16,17] and classical epidemic mod- 

els [11] ) in terms of the three kinds of threats, are adopted to sim- 

ulate a diffusion process and evaluate the efficiency of proposed 

immunization strategies [18] . Similarly, infection rate in these stud- 

ies is predefined artificially. All these studies above consider infec- 

tion rate as a priori knowledge. Hence, it raises an important ques- 

tion: is it possible to deduce and estimate the potential infection 

rate during a diffusion process? If so, we can give an assessment 

with respect to the possible impact of a diffusion and adjust cor- 

responding strategies to control it. 

In addition, inferring an infection rate can be further applied 

to propagation network reconstruction [19] and propagation source 

identification [5] . First, with an inferred infection rate, the under- 

lying propagation network can be reconstructed from the macro 

level of the temporal feature of a propagation process [19] . On the 

other hand, identifying propagation sources based on a set of ob- 

servations, is an effective method to control diffusions triggered 

by network risks [5] . As an instance of the temporal feature of a 

propagation process, the observations in terms of a diffusion phe- 

nomenon are relevant to an infection rate. Therefore, She et al. 
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have proposed a method in which they first deduce the infection 

rate for reproducing the temporal feature of a propagation. Fur- 

thermore, they have identified propagation sources based on such 

temporal feature [20] . However, they do not provide a detailed ex- 

planation and analyze the influence of deployment strategies of 

sensors on the accuracy of infection rate inference. 

Practically, a diffusion phenomenon can be observed from in- 

fected nodes or individuals. For example, an infected computer will 

be detected by security software and reported to security compa- 

nies [21] ; a hospital will report the information of patients with 

infectious disease to centers for disease control (CDC) [4] . The se- 

curity software and the hospital can be seen as sensors which are 

used to monitor the states of nodes in a network. Hence, in this 

paper, we aim to answer the following questions: 

1) Can we infer an infection rate through deploying a set of 

sensors in a network? 

2) Which strategy is better for us to deploy these sensors so 

that we can improve the efficiency of infection rate inference? 

Considering the stochastic effect of a real-world diffusion, we 

employ a backpropagation-based maximum likelihood estimation 

(BP-ML) to infer the potential infection rate. Specifically, the dif- 

fusion data in terms of a propagation process, is reported by the 

deployed sensors. Based on the BP-ML, a desirable result of in- 

fection rate inference is that the temporal feature of a propaga- 

tion process, reproduced by a candidate infection rate, optimally 

matches the observed diffusion data. Furthermore, we estimate the 

influence of different deployment strategies of sensors on the in- 

ference accuracy. Experimental results show that our method can 

effectively deduce the potential infection rate of a diffusion. 

The rest of this paper is organized as follows. Section 2 elu- 

cidates some important research questions. Section 3 intro- 

duces the BP-ML approach used for the infection rate inference. 

Section 4 presents some experiments to evaluate the performance 

of the BP-ML in real-world networks. Finally, we conclude this pa- 

per in Section 5 . 

2. Problem statement 

In this section, we formulate the problem of infection rate infer- 

ence. Then, the metric, i.e., the accuracy of infection rate inference, 

is used for estimating the performance of proposed method. 

Mathematically speaking, the problem of inferring an infection 

rate is equivalent to a maximum likelihood problem. Specifically, 

our goal is to deduce an infection rate which triggers a diffusion 

process similar to a given observed phenomenon. In this paper, be- 

fore deducing the potential infection rate, a set of sensors are de- 

ployed into a network in order to obtain observed diffusion data. A 

network with the deployed sensors can be formulated as a graph 

and defined in Definition 1 . 

Definition 1. A graph G = (V, E, O ) is a finite and undirected net- 

work, in which V = { v i } N i =1 
refers to a set of nodes; E = { e i j | 1 ≤

i, j ≤ N, i � = j} is a set of links; O = { o k } K k =1 
denotes a set of sen- 

sors which are deployed on nodes based on a predefined strategy. 

The total number of nodes in the network is denoted as N = | V | ; 
| E | stands for the total number of edges and e ij represents the link 

between nodes v i and v j ; the total number of sensors is K = | O | 
and K ≤ N . 

Given a structure of G , a diffusion is initiated by an infection 

source with a predefined infection rate p ∗. In most cases, p ∗ is 

fixed and determined by the type of infection. Meanwhile, such in- 

fection rate is unknown to users. It is a challenging problem for us 

to deduce p ∗ from the observed diffusion phenomena in the real 

world. Currently, it is feasible and easy-to-implement to deploy 

a set of sensors O into a network to monitor the states of nodes 

in order to collect necessary diffusion information. Here, the lim- 

ited diffusion data, reported by the deployed sensors O , is called 

the observed infection time. Such time is denoted as T o = { t o 
k 
} K 

k =1 
where K is the total number of sensors. More specifically, t o 

k 
is the 

observed infection time reported by a sensor o k . 

Based on the observed infection time T o , the main task of in- 

fection rate inference is to deduce and estimate an infection rate p 

which should be as close as possible to the real infection rate p ∗. 

The optimal estimator of the infection rate inference is defined in 

Definition 2 . 

Definition 2. The infection rate inference refers to deducing an 

infection rate based on the observed infection time T o , i.e., 

p = x : max S (T o , T r (x )) , x ∈ [0 . 01 , 0 . 09] 

where p is the inferred infection rate; T r ( x ) is the simulated in- 

fection time with a given infection rate x ; the max S (·) returns an 

infection rate x which yields the highest probability of generating 

the observed infection time T o . 

Intuitively, the performance of infection rate inference can be 

measured by the success rate which is defined as follows: 

Definition 3. The success rate of the infection rate inference, is 

defined as the degree to which the inferred infection rate p is close 

to the real p ∗, i.e., 

success _ rate = 

{
1 , p == p ∗

0 , p � = p ∗

Technically speaking, our method is completely data-driven be- 

cause it is based on the observed diffusion data. As long as a dif- 

fusion process is detected by the deployed sensors, the potential 

infection rate can be deduced based on the BP-ML. Details on our 

proposed method are elaborated in the next section. 

3. Infection rate inference 

In this section, we first introduce the deployment strategy with 

respect to sensors in Section 3.1 . Section 3.2 gives a brief descrip- 

tion of the selected propagation model. Section 3.3 describes the 

BP-ML approach used for infection rate inference. 

3.1. The deployment strategy 

As defined in Section 2 , this paper aims to deduce the potential 

infection rate by using the diffusion data reported by a set of sen- 

sors. Given a network G , we deploy sensors into the network based 

on a predefined strategy. 

Many centrality measures have been proposed to estimate the 

influence of nodes [9,22] , such as degree [23] , betweenness [24] , 

and k-core [25] . In general, nodes with a high centrality can facil- 

itate a diffusion process prominently. Therefore, to ensure that a 

diffusion phenomenon can be detected by sensors as soon as pos- 

sible, we deploy sensors based on different centrality measures. In 

detail, the efficiency of different deployment strategies is compared 

in Section 4.3 . 

3.2. SI model-based diffusions 

In this paper, the diffusion process is modeled based on the SI 

model. In detail, each node in G has two corresponding states: (i) 

Infected, if it has been informed (infected) by one of its neighbors; 

(ii) Susceptible, if it has not been informed (infected). The initial 

infection source is selected randomly from G . At time t , a diffu- 

sion starts from infected nodes to susceptible ones through linking 
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